Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of thickness and melting temperature of phase change material integrated into exterior wall on building energy performance and CO2 emission reduction

Yıl 2024, , 959 - 976, 30.11.2023
https://doi.org/10.17341/gazimmfd.1218950

Öz

In the study, the effect of phase change materials integrated into the building's exterior wall has been investigated in terms of material type, thickness, and melting temperature of phase change material on the building energy performance. A villa residential project has been modelled in 3D using DesignBuilder energy simulation software and two different external wall configurations have been designed by changing the position, thickness and melting temperature of the PCMs into the wall. The amount of CO2 emission reductions that PCMs will provide according to the fuel type of the building's heating system has been calculated. Using PCMs in the exterior wall not only provides high heating and cooling energy savings but also increases thermal comfort indoors by reducing temperature fluctuations. The PCM melting temperature of 23°C performs quite well compared to other temperatures in both cooling energy and heating energy demand reduction. By increasing the thickness of the PCM, 18.81% in heating energy and 22.85% in cooling energy savings can be achieved. Depending on the exterior wall and phase change material types, different thicknesses and melting temperatures of PCM, annual total energy saving of the phase-change material is calculated between 10,349.50-83.345.98 kJ/m2.year and the annual CO2 emission reduction according to fuel types has been found as 0.672-14,284 kgCO2/m2.year.

Proje Numarası

Proje No: 21.E0117.07.01

Kaynakça

  • Terhan M., Determination of optimum insulation thickness of building external wall for Gumushane province based on life cycle cost analysis, Open Journal of Nano, 6 (1), 36-46, 2021.
  • Terhan M., Özağdaş E., Omar M.A., Energy and economic assessments of waste heat recovery by designs of economizer, condensing economizer and air preheater, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 2521-2536, 2023.
  • Othan O., Omar M. A., Thermo-economic study of two different combined heat-power system for a hospital, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1467-1480, 2023.
  • Sivanathan A., Dou Q., Wang Y., Li Y., Corker J., Zhou Y., Fan M., Phase change materials for building construction: An overview of nano-micro-encapsulation, Nanotechnology Reviews, 9 (1), 896-921, 2020.
  • Kee S. Y., Munusamy Y., Ong K. S., Review of solar water heaters incorporating solid–liquid organic phase change materials as thermal storage, Applied Thermal Engineering, 131, 455–471, 2018.
  • Yang J., Qi G. Q., Liu Y., Bao R. Y., Liu Z. Y., Yang W., Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage, Carbon, 100, 693–702, 2016.
  • Abdelsalam M. Y., Teamah H. M., Lightstone M. F., Cotton J. S., Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: direct versus indirect heat exchange systems, Renewable Energy, 147, 77–88, 2020.
  • Ng D. Q., Tseng Y. L., Shih Y. F., Lian H. Y., Yu Y. H., Synthesis of novel phase change material microcapsule and its application, Polymer,133, 250-262, 2017.
  • Umair M. M., Zhang Y., Iqbal K., Zhang S., Tang B., Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage – a review, Energy, 235, 846-873, 2019.
  • Sharma A., Tyagi V. V., Chen C. R., Buddhi D., Review on thermal energy storage with phase change materials and applications, Renewable Sustainable Energy Reviews, 13(2), 318-345, 2009.
  • Pomianowski M., Heiselberg P., Zhang Y., Review of thermal energy storage technologies based on PCM application in buildings, Energy Buildings, 67, 56-69, 2013.
  • Saafi K., Daouas N., Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate, Energy, 187, 115987, 2019.
  • Fabiani C., Piselli C., Pisello A. L., Thermo-optic durability of cool roof membranes: effect of shape stabilized phase change material inclusion on building energy efficiency, Energy and Buildings, 207, 109592, 2020.
  • Khan Z., Khan Z., Ghafoor A., A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility, Energy Conversion and Management, 115, 132-158, 2016.
  • Al-Yasiri Q., Szabó M., Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis, Journal of Building Engineering, 36, 102122, 2021.
  • Saffari M., Gracia A., Fernández C., Cabeza L. F., Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings, Applied Energy, 202, 420-434, 2017.
  • Cabeza L. F., Miró L., Oró E., Gracia A., Martin V., Krönauer A., Fernández A. I., CO2 mitigation accounting for thermal energy storage (TES) case studies, Applied Energy, 155, 365-377, 2015.
  • Piselli C., Saffari M., Gracia A., Pisello A. L., Cotana F., Cabeza L. F., Optimization of roof solar reflectance under different climate conditions, occupancy, building configuration and energy systems, Energy and Buildings, 151, 81-97, 2017.
  • Chel A., Kaushik G., Renewable energy technologies for sustainable development of energy efficient building, Alexandria Engineering Journal, 57(2), 655-669, 2018.
  • Tunçbilek E., Arıcı M., Bouadila S., Wonorahardjo S., Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of Marmara region, Journal of Thermal Analysis and Calorimetry, 141 (1), 613-624, 2020.
  • Alam M., Jamil H., Sanjayan J., Wilson J., Energy saving potential of phase change materials in major Australian cities, Energy and Buildings, 78, 192–201, 2014.
  • Sajjadian S. M., Lewis J., Sharples S., The potential of phase change materials to reduce domestic cooling energy loads for current and future UK climates, Energy and Buildings, 93, 83-89, 2015.
  • Shen H., Liu X., Energy savings potential of phase change material integrated building envelope in South Texas, 4th International High Performance Buildings Conference, Purdue-Indiana, 3644 (1-8), 11-14 July, 2016.
  • Lei J., Yang J., Yang E. H., Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore, Applied Energy, 162, 207-217, 2016.
  • Mi X., Liu R., Cui H., Memon S. A., Xing F., Lo Y., Energy and economic analysis of building integrated with PCM in different cities of China, Applied Energy, 175, 324-336, 2016.
  • Aketouane Z., Malha M., Bruneau D., Bah A., Michel B., Asbik M., Ansari O., Energy savings potential by integrating phase change material into hollow bricks: The case of Moroccan buildings, Building Simulation, 11, 1109-1122, 2018.
  • Ozyurt E. E., The evaluation of solar radiation contribution on the use of phase change materials in the external walls regarding building energy efficiency: example of Izmir, Master’s Thesis, Istanbul Technical University, Istanbul, Turkey, 2019.
  • Al-Yasiri Q., Szabó M., Numerical analysis of thin building envelope-integrated phase change material towards energy-efficient buildings in severe hot location, Sustainable Cities and Society, 89, 104365, 2023.
  • Al-Yasiri Q., Szabó M., Building envelope-combined phase change material and thermal insulation for energy-effective buildings during harsh summer: Simulation-based analysis, Energy for Sustainable Development, 72, 326-339, 2023.
  • Kharbouch Y., Mimet A., El Ganaoui M., Ouhsaine L., Thermal energy and economic analysis of a PCM-enhanced household envelope considering different climate zones in Morocco, International Journal of Sustainable Energy, 37 (6), 515-532, 2018.
  • Khan M., Khan M.M., Irfan M., Ahmad N., Haq M.A., Khan I., Mousa M., Energy performance enhancement of residential buildings in Pakistan by integrating phase change materials in building envelopes, Energy Reports, 8, 9290-9307, 2022.
  • Terhan M., Ilgar G., Investigation of used PCM-integrated into building exterior walls for energy savings and optimization of PCM melting temperatures, Construction and Building Materials, 369, 130601, 2023.
  • Arıcı M., Bilgin F., Krajcik M., Nizetic S., Karabay H., Energy saving and CO2 reduction potential of external buildings walls containing two layers of phase change material, Energy, 252, 124010, 2022.
  • Crawley D.B., Lawrie L.K., Winkelmann F.C., Buhl W.F., Huang Y.J., Pedersen C.O., Strand R.K., Liesen R.J., Fisher D.E., Witte M.J., Glazer J., Energyplus: creating a new-generation building energy simulation program, Energy and Buildings, 33, 319-331, 2001.
  • Tabares-Velasco P.C., Christensen C., Bianchi M., Verification and validation of energyplus phase change material model for opaque wall assemblies, Building and Environment, 54, 186-196, 2012.
  • Feng F., Fu Y., Yang Z., O’Neill Z., Enhancement of phase change material hysteresis model: a case study of modeling building envelope in energyplus, Energy&Buildings, 276, 112511, 2022.
  • Terhan M., Optimization insulation thickness and reduction of CO2 emissions for pipes in all generation district heating networks, Science Progress, 105 (3), 1-29, 2022.
  • Energy Performance Regulations in Buildings, Ankara, Turkey, 2011.
  • Al-Yasiri Q., Szabó M., Numerical analysis of thin building envelope-integrated phase change material towards energy-efficient buildings in severe hot location, Sustainable Cities and Society, 89, 104365, 2023.

Dış duvara entegre edilen faz değiştiren malzemenin kalınlığı ve erime sıcaklığının bina enerji performansı ve CO2 emisyon azalımına etkisi

Yıl 2024, , 959 - 976, 30.11.2023
https://doi.org/10.17341/gazimmfd.1218950

Öz

Bu çalışmada, bina dış duvara entegre faz değiştiren malzemenin çeşidi, kalınlığı, erime sıcaklığına bağlı olarak bina enerji performansı üzerine etkisi incelenmiştir. Bir villa konut projesi DesignBuilder enerji simülasyon yazılımında üç boyutlu olarak modellenerek duvar içerisinde faz değiştiren malzemelerin, konumu, kalınlığı ve erime sıcaklığı değiştirilerek iki farklı dış duvar tipi tasarlanmıştır. Faz değiştiren malzemelerin binanın ısıtma sisteminin yakıt çeşidine göre sağlayacağı CO2 emisyon azalım miktarları hesaplanmıştır. Dış duvarda faz değiştiren malzemelerin kullanılması sadece yüksek oranda ısıtma ve soğutma enerjisi tasarrufu sağlamakla kalmaz, aynı zamanda sıcaklık dalgalanmalarını da azaltarak iç ortamların termal konforunu da artırır. Hem soğutma hemde ısıtma enerjisi ihtiyacını düşürmede FDM’nin 23°C erime sıcaklığı diğer sıcaklıklara göre oldukça iyi performans göstermektedir. FDM’nin katman sayısının artmasıyla ısıtma enerjisi ihtiyacında % 18,81 soğutma enerjisi ihtiyacında %22,85 oranında tasarruf sağlanabilir. Dış duvar tipi, faz değiştiren malzeme cinsi, farklı FDM kalınlıkları ve erime sıcaklıklarına bağlı olarak faz değiştiren malzemenin yıllık toplam enerji tasarrufu 10.349,50-83.345,98 kJ/m2.yıl arasında bulunmuş ve yakıt tiplerine göre yıllık CO2 emisyon azalımı ise 0,672-14,284 kgCO2/m2.yıl olarak hesaplanmıştır.

Destekleyen Kurum

Gümüşhane üniversitesi

Proje Numarası

Proje No: 21.E0117.07.01

Teşekkür

Bu çalışmaya finansal katkılarından dolayı Gümüşhane Üniversitesi, Bilimsel Araştırma Projeleri Koordinatörlüğüne teşekkür ederiz.

Kaynakça

  • Terhan M., Determination of optimum insulation thickness of building external wall for Gumushane province based on life cycle cost analysis, Open Journal of Nano, 6 (1), 36-46, 2021.
  • Terhan M., Özağdaş E., Omar M.A., Energy and economic assessments of waste heat recovery by designs of economizer, condensing economizer and air preheater, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (4), 2521-2536, 2023.
  • Othan O., Omar M. A., Thermo-economic study of two different combined heat-power system for a hospital, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1467-1480, 2023.
  • Sivanathan A., Dou Q., Wang Y., Li Y., Corker J., Zhou Y., Fan M., Phase change materials for building construction: An overview of nano-micro-encapsulation, Nanotechnology Reviews, 9 (1), 896-921, 2020.
  • Kee S. Y., Munusamy Y., Ong K. S., Review of solar water heaters incorporating solid–liquid organic phase change materials as thermal storage, Applied Thermal Engineering, 131, 455–471, 2018.
  • Yang J., Qi G. Q., Liu Y., Bao R. Y., Liu Z. Y., Yang W., Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage, Carbon, 100, 693–702, 2016.
  • Abdelsalam M. Y., Teamah H. M., Lightstone M. F., Cotton J. S., Hybrid thermal energy storage with phase change materials for solar domestic hot water applications: direct versus indirect heat exchange systems, Renewable Energy, 147, 77–88, 2020.
  • Ng D. Q., Tseng Y. L., Shih Y. F., Lian H. Y., Yu Y. H., Synthesis of novel phase change material microcapsule and its application, Polymer,133, 250-262, 2017.
  • Umair M. M., Zhang Y., Iqbal K., Zhang S., Tang B., Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage – a review, Energy, 235, 846-873, 2019.
  • Sharma A., Tyagi V. V., Chen C. R., Buddhi D., Review on thermal energy storage with phase change materials and applications, Renewable Sustainable Energy Reviews, 13(2), 318-345, 2009.
  • Pomianowski M., Heiselberg P., Zhang Y., Review of thermal energy storage technologies based on PCM application in buildings, Energy Buildings, 67, 56-69, 2013.
  • Saafi K., Daouas N., Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate, Energy, 187, 115987, 2019.
  • Fabiani C., Piselli C., Pisello A. L., Thermo-optic durability of cool roof membranes: effect of shape stabilized phase change material inclusion on building energy efficiency, Energy and Buildings, 207, 109592, 2020.
  • Khan Z., Khan Z., Ghafoor A., A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility, Energy Conversion and Management, 115, 132-158, 2016.
  • Al-Yasiri Q., Szabó M., Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis, Journal of Building Engineering, 36, 102122, 2021.
  • Saffari M., Gracia A., Fernández C., Cabeza L. F., Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings, Applied Energy, 202, 420-434, 2017.
  • Cabeza L. F., Miró L., Oró E., Gracia A., Martin V., Krönauer A., Fernández A. I., CO2 mitigation accounting for thermal energy storage (TES) case studies, Applied Energy, 155, 365-377, 2015.
  • Piselli C., Saffari M., Gracia A., Pisello A. L., Cotana F., Cabeza L. F., Optimization of roof solar reflectance under different climate conditions, occupancy, building configuration and energy systems, Energy and Buildings, 151, 81-97, 2017.
  • Chel A., Kaushik G., Renewable energy technologies for sustainable development of energy efficient building, Alexandria Engineering Journal, 57(2), 655-669, 2018.
  • Tunçbilek E., Arıcı M., Bouadila S., Wonorahardjo S., Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of Marmara region, Journal of Thermal Analysis and Calorimetry, 141 (1), 613-624, 2020.
  • Alam M., Jamil H., Sanjayan J., Wilson J., Energy saving potential of phase change materials in major Australian cities, Energy and Buildings, 78, 192–201, 2014.
  • Sajjadian S. M., Lewis J., Sharples S., The potential of phase change materials to reduce domestic cooling energy loads for current and future UK climates, Energy and Buildings, 93, 83-89, 2015.
  • Shen H., Liu X., Energy savings potential of phase change material integrated building envelope in South Texas, 4th International High Performance Buildings Conference, Purdue-Indiana, 3644 (1-8), 11-14 July, 2016.
  • Lei J., Yang J., Yang E. H., Energy performance of building envelopes integrated with phase change materials for cooling load reduction in tropical Singapore, Applied Energy, 162, 207-217, 2016.
  • Mi X., Liu R., Cui H., Memon S. A., Xing F., Lo Y., Energy and economic analysis of building integrated with PCM in different cities of China, Applied Energy, 175, 324-336, 2016.
  • Aketouane Z., Malha M., Bruneau D., Bah A., Michel B., Asbik M., Ansari O., Energy savings potential by integrating phase change material into hollow bricks: The case of Moroccan buildings, Building Simulation, 11, 1109-1122, 2018.
  • Ozyurt E. E., The evaluation of solar radiation contribution on the use of phase change materials in the external walls regarding building energy efficiency: example of Izmir, Master’s Thesis, Istanbul Technical University, Istanbul, Turkey, 2019.
  • Al-Yasiri Q., Szabó M., Numerical analysis of thin building envelope-integrated phase change material towards energy-efficient buildings in severe hot location, Sustainable Cities and Society, 89, 104365, 2023.
  • Al-Yasiri Q., Szabó M., Building envelope-combined phase change material and thermal insulation for energy-effective buildings during harsh summer: Simulation-based analysis, Energy for Sustainable Development, 72, 326-339, 2023.
  • Kharbouch Y., Mimet A., El Ganaoui M., Ouhsaine L., Thermal energy and economic analysis of a PCM-enhanced household envelope considering different climate zones in Morocco, International Journal of Sustainable Energy, 37 (6), 515-532, 2018.
  • Khan M., Khan M.M., Irfan M., Ahmad N., Haq M.A., Khan I., Mousa M., Energy performance enhancement of residential buildings in Pakistan by integrating phase change materials in building envelopes, Energy Reports, 8, 9290-9307, 2022.
  • Terhan M., Ilgar G., Investigation of used PCM-integrated into building exterior walls for energy savings and optimization of PCM melting temperatures, Construction and Building Materials, 369, 130601, 2023.
  • Arıcı M., Bilgin F., Krajcik M., Nizetic S., Karabay H., Energy saving and CO2 reduction potential of external buildings walls containing two layers of phase change material, Energy, 252, 124010, 2022.
  • Crawley D.B., Lawrie L.K., Winkelmann F.C., Buhl W.F., Huang Y.J., Pedersen C.O., Strand R.K., Liesen R.J., Fisher D.E., Witte M.J., Glazer J., Energyplus: creating a new-generation building energy simulation program, Energy and Buildings, 33, 319-331, 2001.
  • Tabares-Velasco P.C., Christensen C., Bianchi M., Verification and validation of energyplus phase change material model for opaque wall assemblies, Building and Environment, 54, 186-196, 2012.
  • Feng F., Fu Y., Yang Z., O’Neill Z., Enhancement of phase change material hysteresis model: a case study of modeling building envelope in energyplus, Energy&Buildings, 276, 112511, 2022.
  • Terhan M., Optimization insulation thickness and reduction of CO2 emissions for pipes in all generation district heating networks, Science Progress, 105 (3), 1-29, 2022.
  • Energy Performance Regulations in Buildings, Ankara, Turkey, 2011.
  • Al-Yasiri Q., Szabó M., Numerical analysis of thin building envelope-integrated phase change material towards energy-efficient buildings in severe hot location, Sustainable Cities and Society, 89, 104365, 2023.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık, Mühendislik
Bölüm Makaleler
Yazarlar

Gamze İlgar 0000-0002-7152-5619

Meryem Terhan 0000-0001-7556-9240

Proje Numarası Proje No: 21.E0117.07.01
Erken Görünüm Tarihi 18 Ekim 2023
Yayımlanma Tarihi 30 Kasım 2023
Gönderilme Tarihi 14 Aralık 2022
Kabul Tarihi 15 Mayıs 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA İlgar, G., & Terhan, M. (2023). Dış duvara entegre edilen faz değiştiren malzemenin kalınlığı ve erime sıcaklığının bina enerji performansı ve CO2 emisyon azalımına etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 959-976. https://doi.org/10.17341/gazimmfd.1218950
AMA İlgar G, Terhan M. Dış duvara entegre edilen faz değiştiren malzemenin kalınlığı ve erime sıcaklığının bina enerji performansı ve CO2 emisyon azalımına etkisi. GUMMFD. Kasım 2023;39(2):959-976. doi:10.17341/gazimmfd.1218950
Chicago İlgar, Gamze, ve Meryem Terhan. “Dış Duvara Entegre Edilen Faz değiştiren Malzemenin kalınlığı Ve Erime sıcaklığının Bina Enerji Performansı Ve CO2 Emisyon azalımına Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 2 (Kasım 2023): 959-76. https://doi.org/10.17341/gazimmfd.1218950.
EndNote İlgar G, Terhan M (01 Kasım 2023) Dış duvara entegre edilen faz değiştiren malzemenin kalınlığı ve erime sıcaklığının bina enerji performansı ve CO2 emisyon azalımına etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 2 959–976.
IEEE G. İlgar ve M. Terhan, “Dış duvara entegre edilen faz değiştiren malzemenin kalınlığı ve erime sıcaklığının bina enerji performansı ve CO2 emisyon azalımına etkisi”, GUMMFD, c. 39, sy. 2, ss. 959–976, 2023, doi: 10.17341/gazimmfd.1218950.
ISNAD İlgar, Gamze - Terhan, Meryem. “Dış Duvara Entegre Edilen Faz değiştiren Malzemenin kalınlığı Ve Erime sıcaklığının Bina Enerji Performansı Ve CO2 Emisyon azalımına Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/2 (Kasım 2023), 959-976. https://doi.org/10.17341/gazimmfd.1218950.
JAMA İlgar G, Terhan M. Dış duvara entegre edilen faz değiştiren malzemenin kalınlığı ve erime sıcaklığının bina enerji performansı ve CO2 emisyon azalımına etkisi. GUMMFD. 2023;39:959–976.
MLA İlgar, Gamze ve Meryem Terhan. “Dış Duvara Entegre Edilen Faz değiştiren Malzemenin kalınlığı Ve Erime sıcaklığının Bina Enerji Performansı Ve CO2 Emisyon azalımına Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 2, 2023, ss. 959-76, doi:10.17341/gazimmfd.1218950.
Vancouver İlgar G, Terhan M. Dış duvara entegre edilen faz değiştiren malzemenin kalınlığı ve erime sıcaklığının bina enerji performansı ve CO2 emisyon azalımına etkisi. GUMMFD. 2023;39(2):959-76.