Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrik gücünün daha yaygın kullanıldığı uçaklar için beş fazlı sabit mıknatıslı senkron starter generatörün kontrolü

Yıl 2024, , 1983 - 1998, 20.05.2024
https://doi.org/10.17341/gazimmfd.1225247

Öz

Son yıllarda, fosil yakıtların çevreye verdiği zarar, fosil yakıtların azalması, yakıt maliyetlerindeki artış, otomatik güç kontrolüne ve daha verimli sistemlere olan ihtiyaç gibi nedenlerle elektrikli ulaşım araçlarına olan ilgi artmaktadır. Havacılık sektöründe de yüksek maliyetleri, boyutları ve ağırlıkları nedeniyle tamamen elektrikli uçaklardan ziyade, elektrik enerjisinin daha yaygın kullanıldığı ve bilim dünyasının More Elektrik Aircraft olarak isimlendirdiği, uçaklar yoğun ilgi görmektedir. Bu uçaklarda hidrolik, pnömatik, mekanik sistemler yerini elektrik enerjisi ile çalışan sistemlere bırakmıştır. Yapısı karmaşık, ağır, sürekli bakım gerektiren ve iki farklı sistemden oluşan geleneksel uçaklardaki starter ve jeneratör sistemi yerine, tek bir sürücü ile kontrol edilen, bir elektrik makinasından oluşan, starter-jeneratör sistemi bu tür uçaklarda kullanılmaya başlanmıştır.
Bu çalışmada, beş fazlı Sabit Mıknatıslı Senkron Makina, beş faz uzay vektör darbe genişlik modülasyonu ile kontrol edilen starter-jeneratör sürücüsü, tüm süreci yöneten starter-jeneratör kontrol birimi ve uçak jet motoru birlikte Matlab /Simscape Tollbox ile modellenmiştir. Beş fazlı Sabit Mıknatıslı Senkron Makinanın starter-jeneratör olarak kullanıldığı tüm sistemin, Starter Modu, Geçiç Modu ve Jeneratör Modu olmak üzere üç çalışma modunda kontrolü gerçekleştirilmiştir. Simülasyon sonuçları, önerilen starter-jeneratör sisteminin yeni nesil elektrik enerjisinin yaygın kullanıldığı ve Yüksek Gerilim DA Güç Sistemi’ne sahip yeni nesil uçaklarda kullanılabileceğini göstermiştir.

Destekleyen Kurum

TÜBİTAK 1001

Proje Numarası

121E370

Teşekkür

Bu çalışma TÜBİTAK 121E370’nolu 1001 projesi tarafından desteklenmiştir. TÜBİTAK'a teşekkür ederiz.

Kaynakça

  • 1. European Commission. “Flightpath 2050: Europe's Vision for AviationReport of the High Level Group on Aviation Research”, https://op.europa.eu/en/publication-detail/-/publication/296a9bd7-fef9-4ae8-82c4-a21ff48be673, Son erişim tarihi: Aralık 22, 2022.
  • 2. Zhang Z., Liu Y., Li J., A HESM-based variable frequency ac starter-generator system for aircraft applications, IEEE Transactions on Energy Conversion, 33 (4), 1998-2006, 2018.
  • 3. Rosero J. A., Ortega J. A., Aldabas E., Romeral L., Moving towards a more electric aircraft, IEEE Aerospace and Electronic Systems Magazine, 22 (3), 3-9, 2007.
  • 4. Morioka N., Takeuchi M., Oyori H., Moving to an all-electric aircraft system, IHI Engineering Review, 47 (1), 33-39, 2014.
  • 5. [5] Yıldız B.M., Kalenderli Ö., Altay Ö., Multi-Physical analysis of the effect of cable layout, distance between cables and ambient temperature on cable current carrying capacity in air vehicle wiring with finite element method, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1389-1402, 2023.
  • 6. Chen Z., Wang H., Yan Y., A doubly salient starter/generator with two-section twisted-rotor structure for potential future aerospace application, IEEE Transactions on Industrial Electronics, 59 (9), 3588-3595, 2012.
  • 7. Clark S. F., 787 propulsion system, Aero Quarterly, (3), 5-13, 2012.
  • 8. Madonna V., Giangrande P., Galea M., Electrical power generation in aircraft: Review, challenges, and opportunities, IEEE Transactions on Transportation Electrification, 4 (3), 646-659, 2018.
  • 9. Zhang Z., Huang J., Jiang Y., Geng W., Xu Y., Overview and analysis of PM starter/generator for aircraft electrical power systems, CES Transactions on Electrical Machines and Systems, 1 (2), 117-131, 2017.
  • 10. Ye C., Du K., Liu K., Zhang J., Xiang Y., Qin L., Design and analysis of a novel ıntegrated starter-generator based on brush DC motor, 2021 IEEE 4th Student Conference on Electric Machines and Systems (SCEMS), Wuhan-China, 1-7, December 2021.
  • 11. Chen S., Lequesne B., Henry R.R., Xue Y., Ronning J.J., Design and testing of a belt-driven induction starter-generator, IEEE Transactions on Industry Applications, 38 (6), 1525-1533, 2002.
  • 12. Ferreira C.A., Jones S.R., Heglund W.S., Jones W.D., Detailed design of a 30-kW switched reluctance starter/generator system for a gas turbine engine application, IEEE Transactions on Industry Applications, 31 (3), 553-561, 1995.
  • 13. Zhao E., Song S., Ma Z., Zhang X., Ning L., Liu Y., Design and initial testing of an integrated switched reluctance starter/generator system for unmanned aerial vehicle, CES Transactions on Electrical Machines and Systems, 2 (4), 377-383, 2018.
  • 14. Sun G., Song S., Jiang J., Ge L., Liu W., Characteristics testing and torque control of switched reluctance machine in aero-engine shaft-line-embedded starter/generator, 2022 IEEE Industry Applications Society Annual Meeting (IAS), Detroit-USA, 1-6, 9-14 October 2022.
  • 15. Yıldırız E., Aydemir M.T., Analysıs, design and implementatıon of an axial flux, permanent magnet machine to be used in a low power wind generator, Journal of the Faculty of Engineering and Architecture of Gazi University, 24 (3), 525-531, 2009.
  • 16. Araz H.K., Yılmaz M., Design procedure and implementation of a high-efficiency PMSM with reduced magnetmass and torque-ripple for electric vehicles, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 1089-1110, 2020.
  • 17. Michalski T.D., High efficiency sensorless fault tolerant control of permanent magnet assisted synchronous reluctance motor, Doktora, Universitat Politècnica de Catalunya, Departament d'Enginyeria Electrònica, Barcelona, 2021.
  • 18. Bermúdez Guzmán M., Novel control techniques in multiphase drives: direct control methods (DTC and MPC) under limit situations, Doctora, Institut Des Sciences Et Technologies Paris Institute of Technology, Paris, 2018.
  • 19. Toren M., Mollahasanoğlu H., Investigation of the effect of different power degree NdFeB magnets used in interior permanent magnet brushless direct current motor (IPMBLDC) on motor performance, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1389-1402, 2023.
  • 20. Öksüztepe E., Kaya U., Kurum H., A review of conventional and new-generation aircraft starter/generators in perspective of electric drive applications, Aircraft Engineering and Aerospace Technology, 95 (3), 474-487, 2023.
  • 21. Yeoh S.S., Gao F., Bozhko S., Asher G., Control design for PMM-based starter generator system for More Electric Aircraft, 16th European Conference on Power Electronics and Applications IEEE., Nottingham- UK, 1-10, 26-28 August 2014.
  • 22. Yeoh S.S., Yang T., Tarisciotti L., Hill C.I., Bozhko S., Zanchetta P., Permanent-magnet machine-based starter–generator system with modulated model predictive control, IEEE Transactions on Transportation Electrification, 3 (4), 878-890, 2017.
  • 23. Balachandran A., Boden M., Sun Z., Forrest S.J., Ede J.D., Jewell G.W., Design, construction, and testing of an aero‐engine starter‐generator for the more‐electric aircraft, The Journal of Engineering, 2019 (17), 3474-3478, 2019.
  • 24. Bozhko S. et al., Development of aircraft electric starter–generator system based on active rectification technology, IEEE Transactions on Transportation Electrification, 4 (4), 985-996, 2018.
  • 25. Guo H. et al., Design of an aviation dual-three-phase high-power high-speed permanent magnet assisted synchronous reluctance starter-generator with anti-short-circuit ability, IEEE Transactions on Power Electronics, 37 (10), 12619-12635, 2022.
  • 26. Levi E., Multiphase electric machines for variable-speed applications. IEEE Transactions on industrial electronics, 55 (5), 1893-1909, 2008.
  • 27. http://everyspec.com/MIL-STD/MIL-STD-0700-0799/MIL-STD-704F_1083/ Yayın tarihi Aralık 12, 2016. Erişim tarihi Ağustos 23, 2023.
  • 28. Kuang Z., Zhao T., Cui S., Five-phase permanent magnet synchronous motor drive for aircraft applications, 2016 UKACC 11th International Conference on Control (CONTROL), Belfast-UK, 1-6, 31 August-02 September 2016.
  • 29. Wu S., Tian C., Zhao W., Zhou J, Zhang, X., Design and analysis of an integrated modular motor drive for more electric aircraft, IEEE Transactions on Transportation Electrification, 6 (4), 1412-1420, 2020.
  • 30. Chen Y., Liu B., Zheng Z., Design and Analysis of a Five-Phase Fault-Tolerant Permanent Magnet Synchronous Motor for Aerospace Starter-Generator System, IEEE Access, 10, 40715-40715, 2022.
  • 31. Zheng Z., Li Q., Li X., Zheng P., Yang B., Study of power generation control strategy for five-phase open-winding PMSG based on dual-space closed-loop vector control using carrier-based PWM technique, CSAA/IET International Conference on Aircraft Utility Systems (AUS 2020), Online Conference, 417-424, 18-21 September 2020.
  • 32. Hezzi A., Elghali S.B., Salem Y.B., Abdelkrim M.N., Control of five-phase SMSM for electric vehicle application, 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) IEEE., Monastir-Tunisia, 205-211, 21-23 December 2017.
  • 33. Kamel T., Abdelkader D., Said B., Vector control of five-phase permanent magnet synchronous motor drive, 2015 4th International Conference on Electrical Engineering (ICEE), Boumerdes-Algeria, 1-4, 13-15 December 2015.
  • 34. Chen H.C., Hsu C.H., Chang D.K., Position sensorless control for five-phase permanent-magnet synchronous motors, In 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics IEEE., Besacon-France,794-799, 8-11 July 2014.
  • 35. Devi G.R., Rajambal K., Novel space vector pulse width modulation technique for 5-Phase voltage source inverter. In 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA) IEEE., Pondicherry- India, 1-9, 6-7 July, 2018.
  • 36. Iqbal A., Levi E., Space vector PWM techniques for sinusoidal output voltage generation with a five-phase voltage source inverter, Electric Power Components and Systems, 34 (2), 119-140, 2006.
Yıl 2024, , 1983 - 1998, 20.05.2024
https://doi.org/10.17341/gazimmfd.1225247

Öz

Proje Numarası

121E370

Kaynakça

  • 1. European Commission. “Flightpath 2050: Europe's Vision for AviationReport of the High Level Group on Aviation Research”, https://op.europa.eu/en/publication-detail/-/publication/296a9bd7-fef9-4ae8-82c4-a21ff48be673, Son erişim tarihi: Aralık 22, 2022.
  • 2. Zhang Z., Liu Y., Li J., A HESM-based variable frequency ac starter-generator system for aircraft applications, IEEE Transactions on Energy Conversion, 33 (4), 1998-2006, 2018.
  • 3. Rosero J. A., Ortega J. A., Aldabas E., Romeral L., Moving towards a more electric aircraft, IEEE Aerospace and Electronic Systems Magazine, 22 (3), 3-9, 2007.
  • 4. Morioka N., Takeuchi M., Oyori H., Moving to an all-electric aircraft system, IHI Engineering Review, 47 (1), 33-39, 2014.
  • 5. [5] Yıldız B.M., Kalenderli Ö., Altay Ö., Multi-Physical analysis of the effect of cable layout, distance between cables and ambient temperature on cable current carrying capacity in air vehicle wiring with finite element method, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1389-1402, 2023.
  • 6. Chen Z., Wang H., Yan Y., A doubly salient starter/generator with two-section twisted-rotor structure for potential future aerospace application, IEEE Transactions on Industrial Electronics, 59 (9), 3588-3595, 2012.
  • 7. Clark S. F., 787 propulsion system, Aero Quarterly, (3), 5-13, 2012.
  • 8. Madonna V., Giangrande P., Galea M., Electrical power generation in aircraft: Review, challenges, and opportunities, IEEE Transactions on Transportation Electrification, 4 (3), 646-659, 2018.
  • 9. Zhang Z., Huang J., Jiang Y., Geng W., Xu Y., Overview and analysis of PM starter/generator for aircraft electrical power systems, CES Transactions on Electrical Machines and Systems, 1 (2), 117-131, 2017.
  • 10. Ye C., Du K., Liu K., Zhang J., Xiang Y., Qin L., Design and analysis of a novel ıntegrated starter-generator based on brush DC motor, 2021 IEEE 4th Student Conference on Electric Machines and Systems (SCEMS), Wuhan-China, 1-7, December 2021.
  • 11. Chen S., Lequesne B., Henry R.R., Xue Y., Ronning J.J., Design and testing of a belt-driven induction starter-generator, IEEE Transactions on Industry Applications, 38 (6), 1525-1533, 2002.
  • 12. Ferreira C.A., Jones S.R., Heglund W.S., Jones W.D., Detailed design of a 30-kW switched reluctance starter/generator system for a gas turbine engine application, IEEE Transactions on Industry Applications, 31 (3), 553-561, 1995.
  • 13. Zhao E., Song S., Ma Z., Zhang X., Ning L., Liu Y., Design and initial testing of an integrated switched reluctance starter/generator system for unmanned aerial vehicle, CES Transactions on Electrical Machines and Systems, 2 (4), 377-383, 2018.
  • 14. Sun G., Song S., Jiang J., Ge L., Liu W., Characteristics testing and torque control of switched reluctance machine in aero-engine shaft-line-embedded starter/generator, 2022 IEEE Industry Applications Society Annual Meeting (IAS), Detroit-USA, 1-6, 9-14 October 2022.
  • 15. Yıldırız E., Aydemir M.T., Analysıs, design and implementatıon of an axial flux, permanent magnet machine to be used in a low power wind generator, Journal of the Faculty of Engineering and Architecture of Gazi University, 24 (3), 525-531, 2009.
  • 16. Araz H.K., Yılmaz M., Design procedure and implementation of a high-efficiency PMSM with reduced magnetmass and torque-ripple for electric vehicles, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 1089-1110, 2020.
  • 17. Michalski T.D., High efficiency sensorless fault tolerant control of permanent magnet assisted synchronous reluctance motor, Doktora, Universitat Politècnica de Catalunya, Departament d'Enginyeria Electrònica, Barcelona, 2021.
  • 18. Bermúdez Guzmán M., Novel control techniques in multiphase drives: direct control methods (DTC and MPC) under limit situations, Doctora, Institut Des Sciences Et Technologies Paris Institute of Technology, Paris, 2018.
  • 19. Toren M., Mollahasanoğlu H., Investigation of the effect of different power degree NdFeB magnets used in interior permanent magnet brushless direct current motor (IPMBLDC) on motor performance, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1389-1402, 2023.
  • 20. Öksüztepe E., Kaya U., Kurum H., A review of conventional and new-generation aircraft starter/generators in perspective of electric drive applications, Aircraft Engineering and Aerospace Technology, 95 (3), 474-487, 2023.
  • 21. Yeoh S.S., Gao F., Bozhko S., Asher G., Control design for PMM-based starter generator system for More Electric Aircraft, 16th European Conference on Power Electronics and Applications IEEE., Nottingham- UK, 1-10, 26-28 August 2014.
  • 22. Yeoh S.S., Yang T., Tarisciotti L., Hill C.I., Bozhko S., Zanchetta P., Permanent-magnet machine-based starter–generator system with modulated model predictive control, IEEE Transactions on Transportation Electrification, 3 (4), 878-890, 2017.
  • 23. Balachandran A., Boden M., Sun Z., Forrest S.J., Ede J.D., Jewell G.W., Design, construction, and testing of an aero‐engine starter‐generator for the more‐electric aircraft, The Journal of Engineering, 2019 (17), 3474-3478, 2019.
  • 24. Bozhko S. et al., Development of aircraft electric starter–generator system based on active rectification technology, IEEE Transactions on Transportation Electrification, 4 (4), 985-996, 2018.
  • 25. Guo H. et al., Design of an aviation dual-three-phase high-power high-speed permanent magnet assisted synchronous reluctance starter-generator with anti-short-circuit ability, IEEE Transactions on Power Electronics, 37 (10), 12619-12635, 2022.
  • 26. Levi E., Multiphase electric machines for variable-speed applications. IEEE Transactions on industrial electronics, 55 (5), 1893-1909, 2008.
  • 27. http://everyspec.com/MIL-STD/MIL-STD-0700-0799/MIL-STD-704F_1083/ Yayın tarihi Aralık 12, 2016. Erişim tarihi Ağustos 23, 2023.
  • 28. Kuang Z., Zhao T., Cui S., Five-phase permanent magnet synchronous motor drive for aircraft applications, 2016 UKACC 11th International Conference on Control (CONTROL), Belfast-UK, 1-6, 31 August-02 September 2016.
  • 29. Wu S., Tian C., Zhao W., Zhou J, Zhang, X., Design and analysis of an integrated modular motor drive for more electric aircraft, IEEE Transactions on Transportation Electrification, 6 (4), 1412-1420, 2020.
  • 30. Chen Y., Liu B., Zheng Z., Design and Analysis of a Five-Phase Fault-Tolerant Permanent Magnet Synchronous Motor for Aerospace Starter-Generator System, IEEE Access, 10, 40715-40715, 2022.
  • 31. Zheng Z., Li Q., Li X., Zheng P., Yang B., Study of power generation control strategy for five-phase open-winding PMSG based on dual-space closed-loop vector control using carrier-based PWM technique, CSAA/IET International Conference on Aircraft Utility Systems (AUS 2020), Online Conference, 417-424, 18-21 September 2020.
  • 32. Hezzi A., Elghali S.B., Salem Y.B., Abdelkrim M.N., Control of five-phase SMSM for electric vehicle application, 2017 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) IEEE., Monastir-Tunisia, 205-211, 21-23 December 2017.
  • 33. Kamel T., Abdelkader D., Said B., Vector control of five-phase permanent magnet synchronous motor drive, 2015 4th International Conference on Electrical Engineering (ICEE), Boumerdes-Algeria, 1-4, 13-15 December 2015.
  • 34. Chen H.C., Hsu C.H., Chang D.K., Position sensorless control for five-phase permanent-magnet synchronous motors, In 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics IEEE., Besacon-France,794-799, 8-11 July 2014.
  • 35. Devi G.R., Rajambal K., Novel space vector pulse width modulation technique for 5-Phase voltage source inverter. In 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA) IEEE., Pondicherry- India, 1-9, 6-7 July, 2018.
  • 36. Iqbal A., Levi E., Space vector PWM techniques for sinusoidal output voltage generation with a five-phase voltage source inverter, Electric Power Components and Systems, 34 (2), 119-140, 2006.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Eyyüp Öksüztepe 0000-0002-5446-4308

Murat Yapan Bu kişi benim 0000-0001-8819-9269

Proje Numarası 121E370
Erken Görünüm Tarihi 16 Mayıs 2024
Yayımlanma Tarihi 20 Mayıs 2024
Gönderilme Tarihi 27 Aralık 2022
Kabul Tarihi 20 Ekim 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Öksüztepe, E., & Yapan, M. (2024). Elektrik gücünün daha yaygın kullanıldığı uçaklar için beş fazlı sabit mıknatıslı senkron starter generatörün kontrolü. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1983-1998. https://doi.org/10.17341/gazimmfd.1225247
AMA Öksüztepe E, Yapan M. Elektrik gücünün daha yaygın kullanıldığı uçaklar için beş fazlı sabit mıknatıslı senkron starter generatörün kontrolü. GUMMFD. Mayıs 2024;39(3):1983-1998. doi:10.17341/gazimmfd.1225247
Chicago Öksüztepe, Eyyüp, ve Murat Yapan. “Elektrik gücünün Daha yaygın kullanıldığı uçaklar için Beş Fazlı Sabit mıknatıslı Senkron Starter generatörün Kontrolü”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 3 (Mayıs 2024): 1983-98. https://doi.org/10.17341/gazimmfd.1225247.
EndNote Öksüztepe E, Yapan M (01 Mayıs 2024) Elektrik gücünün daha yaygın kullanıldığı uçaklar için beş fazlı sabit mıknatıslı senkron starter generatörün kontrolü. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1983–1998.
IEEE E. Öksüztepe ve M. Yapan, “Elektrik gücünün daha yaygın kullanıldığı uçaklar için beş fazlı sabit mıknatıslı senkron starter generatörün kontrolü”, GUMMFD, c. 39, sy. 3, ss. 1983–1998, 2024, doi: 10.17341/gazimmfd.1225247.
ISNAD Öksüztepe, Eyyüp - Yapan, Murat. “Elektrik gücünün Daha yaygın kullanıldığı uçaklar için Beş Fazlı Sabit mıknatıslı Senkron Starter generatörün Kontrolü”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (Mayıs 2024), 1983-1998. https://doi.org/10.17341/gazimmfd.1225247.
JAMA Öksüztepe E, Yapan M. Elektrik gücünün daha yaygın kullanıldığı uçaklar için beş fazlı sabit mıknatıslı senkron starter generatörün kontrolü. GUMMFD. 2024;39:1983–1998.
MLA Öksüztepe, Eyyüp ve Murat Yapan. “Elektrik gücünün Daha yaygın kullanıldığı uçaklar için Beş Fazlı Sabit mıknatıslı Senkron Starter generatörün Kontrolü”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 3, 2024, ss. 1983-98, doi:10.17341/gazimmfd.1225247.
Vancouver Öksüztepe E, Yapan M. Elektrik gücünün daha yaygın kullanıldığı uçaklar için beş fazlı sabit mıknatıslı senkron starter generatörün kontrolü. GUMMFD. 2024;39(3):1983-98.