Araştırma Makalesi
BibTex RIS Kaynak Göster

Modelling and analysis of wire ropes subjected to transverse impact load using peridynamic theory

Yıl 2024, , 847 - 858, 30.11.2023
https://doi.org/10.17341/gazimmfd.1225810

Öz

The problem of modelling of failure in steel wire ropes using various numerical methods has been widely addressed. However, there is a relatively small body of literature concerned with dynamic loading due to the complexity of the structure. Peridynamic (PD) theory was used in this study to modelling the crack propagation in a wire rope section. The wire rope structure subjected to transverse impact load was modelled within this framework. Two pre-defined crack line were located in a section of the wire. The crack propagation velocity and wave propagation were considered to examine the effect of numerical parameters on the failure mechanism. One of the important results is that reducing the radius of the horizon by keeping the number of material points constant causes a decrease in crack propagation speed. Another result is that as the contact surface on which the impact load acts become smaller, it results in significant damage on the surface. In addition, it has been shown that the effect of wave propagation on crack initiation and propagation can be modelled by the Peridynamic theory.

Proje Numarası

2219 Yurt Dışı Doktora Sonrası Araştırma Burs Programı (Proje No: 1059B192100891)

Kaynakça

  • 1. Sancak A., Candaş A., Imrak C.E., Analysis and Comparison of Elevator Cabin Guide Rail Bracket Designs Under Earthquake Load, European Journal of Science and Technology, 24 (1), 60–66, 2021.
  • 2. Candaş A., Sancak A., Imrak C.E., Noise Measurement in Elevators, European Journal of Science and Technology, 24 (1), 75–80, 2021.
  • 3. Sancak A., Imrak C.E., Candaș A., Deprem bölgelerindeki asansör tesislerinin deprem önlemleri ve hesaplama esaslarının karşılaştırılması,. X. İzmir Asansör Sempozyumu, Makina Mühendisleri Odası, İzmir, 95–104, 2021.
  • 4. Cardou A., Jolicoeur C., Mechanical models of helical strands, Applied Mechanics Reviews, 50 (1), 1–14, 1997.
  • 5. Hobbs R.E., Raoof M., Behaviour of cables under dynamic or repeated loading, Journal of Constructional Steel Research, 39 (1 SPEC. ISS.), 31–50, 1996.
  • 6. Foti F., de Luca di Roseto A., Analytical and finite element modelling of the elastic–plastic behaviour of metallic strands under axial–torsional loads, International Journal of Mechanical Sciences, 115–116 (1), 202–214, 2016.
  • 7. Jiang W.G., Yao M.S., Walton J.M., A concise finite element model for simple straight wire rope strand, International Journal of Mechanical Sciences, 41 (2), 143–161, 1999.
  • 8. Jiang W.G., Henshall J.L., Walton J.M., Concise finite element model for three-layered straight wire rope strand, International Journal of Mechanical Sciences, 42 (1), 63–86, 2000.
  • 9. Jiang W.G., Warby M.K., Henshall J.L., Statically indeterminate contacts in axially loaded wire strand, European Journal of Mechanics, A/Solids, 27 (1), 69–78, 2008.
  • 10. Fontanari V., Benedetti M., Monelli B.D., Elasto-plastic behavior of a Warrington-Seale rope: Experimental analysis and finite element modeling, Engineering Structures, 82 (1), 113–120, 2015.
  • 11. Fontanari V., Benedetti M., Monelli B.D., Degasperi F., Fire behavior of steel wire ropes: Experimental investigation and numerical analysis, Engineering Structures, 84 (1), 340–349, 2015.
  • 12. Karathanasopoulos N., Reda H., Ganghoffer J., Finite element modeling of the elastoplastic axial-torsional response of helical constructions to traction loads, International Journal of Mechanical Sciences, 133 (1), 368–375, 2017.
  • 13. Argatov I.I., Gómez X., Tato W., Urchegui M.A., Wear evolution in a stranded rope under cyclic bending: Implications to fatigue life estimation, Wear, 271 (11–12), 2857–2867, 2011.
  • 14. Salman O., Imrak C.E., Experimental investigation of corrosion effect on bending fatigue of the wire ropes, Indian Journal of Engineering and Materials Sciences, 27 (03), 770–775, 2020.
  • 15. Imrak C.E., Erdönmez C., On the problem of wire rope model generation with axial loading, Mathematical and Computational Applications, 15 (2), 259–268, 2010.
  • 16. Erdonmez C., Imrak C.E., A finite element model for independent wire rope core with double helical geometry subjected to axial loads, Sadhana - Academy Proceedings in Engineering Sciences, 36 (6), 995–1008, 2011.
  • 17. Erdönmez C., Imrak C.E., Modeling techniques of nested helical structure based geometry for numerical analysis, Strojniski Vestnik/Journal of Mechanical Engineering, 57 (4), 283–292, 2011.
  • 18. Erdönmez C., N-Tuple Complex Helical Geometry Modeling Using Parametric Equations, Engineering with Computers, 30 (4), 715–726, 2014.
  • 19. Erdönmez C., Computational Design of the Compacted Wire Strand Model and Its Behavior Under Axial Elongation, International Journal of Precision Engineering and Manufacturing, 20 (11), 1957–1968, 2019.
  • 20. Erdönmez C., Analysis and design of compacted IWRC meshed model under axial strain, International Journal of Mechanics and Materials in Design, 16 (3), 647–661, 2020.
  • 21. Kastratović G., Vidanović N., Grbović A., Mirkov N., Rašuo B., Numerical Simulation of Crack Propagation in Seven-Wire Strand,. Lecture Notes in Networks and Systems, 76–91, 2020.
  • 22. Zhou X., Wang Y., Qian Q., Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics, European Journal of Mechanics, A/Solids, 60 (1), 277–299, 2016.
  • 23. Silling S.A., Askari E., A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83 (17–18), 1526–1535, 2005.
  • 24. Silling S.A., Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48 (1), 175–209, 2000.
  • 25. Candaş A., Oterkus E., Imrak C.E., Dynamic crack propagation and its interaction with micro-cracks in an impact problem, Journal of Engineering Materials and Technology, Transactions of the ASME, 143 (1), 1–10, 2021.
  • 26. Candaş, A., Oterkus, E., Imrak, C.E., Peridynamic simulation of dynamic fracture in functionally graded materials subjected to impact load. Engineering with Computers, 39 (1), 253-267, 2023.
  • 27. Candaş A., Constitutive Failure Modelling and Analysis of Steel Wire Rope Structures Subjected to Impact Loading, Doctoral dissertation, Graduate School, Istanbul Technical University, Istanbul, 2021.
  • 28. Basoglu M.F., Zerin Z., Kefal A., Oterkus E., A computational model of peridynamic theory for deflecting behavior of crack propagation with micro-cracks, Computational Materials Science, 162 (1), 33–46, 2019.
  • 29. Vazic B., Wang H., Diyaroglu C., Oterkus S., Oterkus E., Dynamic propagation of a macrocrack interacting with parallel small cracks, AIMS Materials Science, 4 (1), 118–136, 2017.
  • 30. Ozdemir M., Kefal A., Imachi M., Tanaka S., Oterkus E., Dynamic fracture analysis of functionally graded materials using ordinary state-based peridynamics, Composite Structures, 244 (1), 112296, 2020.
  • 31. Kaya K., Olmuş İ., Dördüncü M., Investigation of fracture behaviour of one-dimensional functionally graded plates by using peridynamic theory, Journal of the Faculty of Engineering and Architecture of Gazi University28 (1), 319–329, 2023.
  • 32. Hu W., Peridynamic models for dynamic brittle fracture, Doctoral dissertation, University of Nebraska-Lincoln, 2012.
  • 33. Woodward R.L., Baxter B.J., Pattie S.D., McCarthy P., Impact Fragmentation of Brittle Materials, Le Journal de Physique IV, 01 (C3), C3-259-C3-264, 1991.
  • 34. Morrissey J.W., Rice J.R., Crack front waves, Journal of the Mechanics and Physics of Solids, 46 (3), 467–487, 1998.
  • 35. Ramanathan S., Fisher D.S., Dynamics and instabilities of planar tensile cracks in heterogeneous media, Physical Review Letters, 79 (5), 877–880, 1997.
  • 36. Guo J.S., Gao W.C., Study of the Kalthoff–Winkler experiment using an ordinary state-based peridynamic model under low velocity impact, Advances in Mechanical Engineering, 11 (5), 1–11, 2019.
  • 37. Mahmoud K.M., Fracture strength for a high strength steel bridge cable wire with a surface crack, Theoretical and Applied Fracture Mechanics, 48 (2), 152–160, 2007.
  • 38. Chen Y., Qin W., Wang Q., Tan H., Influence of corrosion pit on the tensile mechanical properties of a multi- layered wire rope strand, Construction and Building Materials, 302 (1), 124387, 2021.
  • 39. Silling S.A., Epton M., Weckner O., Xu J., Askari E., Peridynamic states and constitutive modeling, Journal of Elasticity, 88 (2), 151–184, 2007.
  • 40. Madenci E., Oterkus E., Peridynamic theory and its applications, Springer New York, New York, NY, 2014.
  • 41. Bobaru F., Yang M., Alves L.F., Silling S.A., Askari E., Xu J., Convergence, adaptive refinement, and scaling in 1D peridynamics, International Journal for Numerical Methods in Engineering, 77 (6), 852–877, 2009.
  • 42. Stukowski A., Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, 18 (1), 2010.
  • 43. Cheng Z., Zhang G., Wang Y., Bobaru F., A peridynamic model for dynamic fracture in functionally graded materials, Composite Structures, 133 (1), 529–546, 2015.
  • 44. Ha Y.D., Bobaru F., Studies of dynamic crack propagation and crack branching with peridynamics, International Journal of Fracture, 162 (1–2), 229–244, 2010.

Enine darbe yükü altındaki tel halatların peridinamik teorisi ile modellenmesi ve analizi

Yıl 2024, , 847 - 858, 30.11.2023
https://doi.org/10.17341/gazimmfd.1225810

Öz

Çelik tel halatlarda hasar modellemesi çeşitli sayısal yöntemler kullanılarak literatürde geniş çapta incelenmiştir. Bununla birlikte, yapının karmaşıklığından dolayı dinamik yükleme ile ilgili nispeten az sayıda çalışma bulunmaktadır. Bu çalışmada, bir tel halat kesitindeki çatlak ilerlemesini modellemek için Peridinamik (PD) teorisi kullanılmıştır. Enine darbe yüküne maruz kalan tel halat Peridinamik teorisi ile modellenmiştir. Önceden tanımlanmış iki çatlak çizgisi tel kesiti içine yerleştirilmiştir. Kırık ilerleme hızı ve dalga yayılımı, parametrelerin etkisini değerlendirmek için kullanılmıştır. En önemli sonuçlardan biri ufuk yarıçapının aynı aile üyesi sayısı kullanılarak azaltıldığında kırık ilerleme hızında azalış meydana gelmesidir. Bir diğer sonuç darbe yükününün yapıya etkidiği temas yüzeyinin küçülmesi ile yüzeydeki hasarın artmasıdır. Bunlarla beraber, dalga yayılımının çatlak başlangıcı ve gelişimi üzerindeki etkisinin Peridinamik yöntemi ile modellenebileceği gösterilmiştir.

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Proje Numarası

2219 Yurt Dışı Doktora Sonrası Araştırma Burs Programı (Proje No: 1059B192100891)

Teşekkür

Yazarlardan Adem Candaş Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) 2219 Yurt Dışı Doktora Sonrası Araştırma Burs Programı (Proje No: 1059B192100891) kapsamında desteklenmektedir.

Kaynakça

  • 1. Sancak A., Candaş A., Imrak C.E., Analysis and Comparison of Elevator Cabin Guide Rail Bracket Designs Under Earthquake Load, European Journal of Science and Technology, 24 (1), 60–66, 2021.
  • 2. Candaş A., Sancak A., Imrak C.E., Noise Measurement in Elevators, European Journal of Science and Technology, 24 (1), 75–80, 2021.
  • 3. Sancak A., Imrak C.E., Candaș A., Deprem bölgelerindeki asansör tesislerinin deprem önlemleri ve hesaplama esaslarının karşılaştırılması,. X. İzmir Asansör Sempozyumu, Makina Mühendisleri Odası, İzmir, 95–104, 2021.
  • 4. Cardou A., Jolicoeur C., Mechanical models of helical strands, Applied Mechanics Reviews, 50 (1), 1–14, 1997.
  • 5. Hobbs R.E., Raoof M., Behaviour of cables under dynamic or repeated loading, Journal of Constructional Steel Research, 39 (1 SPEC. ISS.), 31–50, 1996.
  • 6. Foti F., de Luca di Roseto A., Analytical and finite element modelling of the elastic–plastic behaviour of metallic strands under axial–torsional loads, International Journal of Mechanical Sciences, 115–116 (1), 202–214, 2016.
  • 7. Jiang W.G., Yao M.S., Walton J.M., A concise finite element model for simple straight wire rope strand, International Journal of Mechanical Sciences, 41 (2), 143–161, 1999.
  • 8. Jiang W.G., Henshall J.L., Walton J.M., Concise finite element model for three-layered straight wire rope strand, International Journal of Mechanical Sciences, 42 (1), 63–86, 2000.
  • 9. Jiang W.G., Warby M.K., Henshall J.L., Statically indeterminate contacts in axially loaded wire strand, European Journal of Mechanics, A/Solids, 27 (1), 69–78, 2008.
  • 10. Fontanari V., Benedetti M., Monelli B.D., Elasto-plastic behavior of a Warrington-Seale rope: Experimental analysis and finite element modeling, Engineering Structures, 82 (1), 113–120, 2015.
  • 11. Fontanari V., Benedetti M., Monelli B.D., Degasperi F., Fire behavior of steel wire ropes: Experimental investigation and numerical analysis, Engineering Structures, 84 (1), 340–349, 2015.
  • 12. Karathanasopoulos N., Reda H., Ganghoffer J., Finite element modeling of the elastoplastic axial-torsional response of helical constructions to traction loads, International Journal of Mechanical Sciences, 133 (1), 368–375, 2017.
  • 13. Argatov I.I., Gómez X., Tato W., Urchegui M.A., Wear evolution in a stranded rope under cyclic bending: Implications to fatigue life estimation, Wear, 271 (11–12), 2857–2867, 2011.
  • 14. Salman O., Imrak C.E., Experimental investigation of corrosion effect on bending fatigue of the wire ropes, Indian Journal of Engineering and Materials Sciences, 27 (03), 770–775, 2020.
  • 15. Imrak C.E., Erdönmez C., On the problem of wire rope model generation with axial loading, Mathematical and Computational Applications, 15 (2), 259–268, 2010.
  • 16. Erdonmez C., Imrak C.E., A finite element model for independent wire rope core with double helical geometry subjected to axial loads, Sadhana - Academy Proceedings in Engineering Sciences, 36 (6), 995–1008, 2011.
  • 17. Erdönmez C., Imrak C.E., Modeling techniques of nested helical structure based geometry for numerical analysis, Strojniski Vestnik/Journal of Mechanical Engineering, 57 (4), 283–292, 2011.
  • 18. Erdönmez C., N-Tuple Complex Helical Geometry Modeling Using Parametric Equations, Engineering with Computers, 30 (4), 715–726, 2014.
  • 19. Erdönmez C., Computational Design of the Compacted Wire Strand Model and Its Behavior Under Axial Elongation, International Journal of Precision Engineering and Manufacturing, 20 (11), 1957–1968, 2019.
  • 20. Erdönmez C., Analysis and design of compacted IWRC meshed model under axial strain, International Journal of Mechanics and Materials in Design, 16 (3), 647–661, 2020.
  • 21. Kastratović G., Vidanović N., Grbović A., Mirkov N., Rašuo B., Numerical Simulation of Crack Propagation in Seven-Wire Strand,. Lecture Notes in Networks and Systems, 76–91, 2020.
  • 22. Zhou X., Wang Y., Qian Q., Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics, European Journal of Mechanics, A/Solids, 60 (1), 277–299, 2016.
  • 23. Silling S.A., Askari E., A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83 (17–18), 1526–1535, 2005.
  • 24. Silling S.A., Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48 (1), 175–209, 2000.
  • 25. Candaş A., Oterkus E., Imrak C.E., Dynamic crack propagation and its interaction with micro-cracks in an impact problem, Journal of Engineering Materials and Technology, Transactions of the ASME, 143 (1), 1–10, 2021.
  • 26. Candaş, A., Oterkus, E., Imrak, C.E., Peridynamic simulation of dynamic fracture in functionally graded materials subjected to impact load. Engineering with Computers, 39 (1), 253-267, 2023.
  • 27. Candaş A., Constitutive Failure Modelling and Analysis of Steel Wire Rope Structures Subjected to Impact Loading, Doctoral dissertation, Graduate School, Istanbul Technical University, Istanbul, 2021.
  • 28. Basoglu M.F., Zerin Z., Kefal A., Oterkus E., A computational model of peridynamic theory for deflecting behavior of crack propagation with micro-cracks, Computational Materials Science, 162 (1), 33–46, 2019.
  • 29. Vazic B., Wang H., Diyaroglu C., Oterkus S., Oterkus E., Dynamic propagation of a macrocrack interacting with parallel small cracks, AIMS Materials Science, 4 (1), 118–136, 2017.
  • 30. Ozdemir M., Kefal A., Imachi M., Tanaka S., Oterkus E., Dynamic fracture analysis of functionally graded materials using ordinary state-based peridynamics, Composite Structures, 244 (1), 112296, 2020.
  • 31. Kaya K., Olmuş İ., Dördüncü M., Investigation of fracture behaviour of one-dimensional functionally graded plates by using peridynamic theory, Journal of the Faculty of Engineering and Architecture of Gazi University28 (1), 319–329, 2023.
  • 32. Hu W., Peridynamic models for dynamic brittle fracture, Doctoral dissertation, University of Nebraska-Lincoln, 2012.
  • 33. Woodward R.L., Baxter B.J., Pattie S.D., McCarthy P., Impact Fragmentation of Brittle Materials, Le Journal de Physique IV, 01 (C3), C3-259-C3-264, 1991.
  • 34. Morrissey J.W., Rice J.R., Crack front waves, Journal of the Mechanics and Physics of Solids, 46 (3), 467–487, 1998.
  • 35. Ramanathan S., Fisher D.S., Dynamics and instabilities of planar tensile cracks in heterogeneous media, Physical Review Letters, 79 (5), 877–880, 1997.
  • 36. Guo J.S., Gao W.C., Study of the Kalthoff–Winkler experiment using an ordinary state-based peridynamic model under low velocity impact, Advances in Mechanical Engineering, 11 (5), 1–11, 2019.
  • 37. Mahmoud K.M., Fracture strength for a high strength steel bridge cable wire with a surface crack, Theoretical and Applied Fracture Mechanics, 48 (2), 152–160, 2007.
  • 38. Chen Y., Qin W., Wang Q., Tan H., Influence of corrosion pit on the tensile mechanical properties of a multi- layered wire rope strand, Construction and Building Materials, 302 (1), 124387, 2021.
  • 39. Silling S.A., Epton M., Weckner O., Xu J., Askari E., Peridynamic states and constitutive modeling, Journal of Elasticity, 88 (2), 151–184, 2007.
  • 40. Madenci E., Oterkus E., Peridynamic theory and its applications, Springer New York, New York, NY, 2014.
  • 41. Bobaru F., Yang M., Alves L.F., Silling S.A., Askari E., Xu J., Convergence, adaptive refinement, and scaling in 1D peridynamics, International Journal for Numerical Methods in Engineering, 77 (6), 852–877, 2009.
  • 42. Stukowski A., Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, 18 (1), 2010.
  • 43. Cheng Z., Zhang G., Wang Y., Bobaru F., A peridynamic model for dynamic fracture in functionally graded materials, Composite Structures, 133 (1), 529–546, 2015.
  • 44. Ha Y.D., Bobaru F., Studies of dynamic crack propagation and crack branching with peridynamics, International Journal of Fracture, 162 (1–2), 229–244, 2010.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Adem Candaş 0000-0002-9951-9122

Erkan Oterkus 0000-0002-4614-7214

Cevat Erdem İmrak 0000-0003-4428-0158

Proje Numarası 2219 Yurt Dışı Doktora Sonrası Araştırma Burs Programı (Proje No: 1059B192100891)
Erken Görünüm Tarihi 18 Ekim 2023
Yayımlanma Tarihi 30 Kasım 2023
Gönderilme Tarihi 28 Aralık 2022
Kabul Tarihi 19 Nisan 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Candaş, A., Oterkus, E., & İmrak, C. E. (2023). Enine darbe yükü altındaki tel halatların peridinamik teorisi ile modellenmesi ve analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 847-858. https://doi.org/10.17341/gazimmfd.1225810
AMA Candaş A, Oterkus E, İmrak CE. Enine darbe yükü altındaki tel halatların peridinamik teorisi ile modellenmesi ve analizi. GUMMFD. Kasım 2023;39(2):847-858. doi:10.17341/gazimmfd.1225810
Chicago Candaş, Adem, Erkan Oterkus, ve Cevat Erdem İmrak. “Enine Darbe yükü altındaki Tel halatların Peridinamik Teorisi Ile Modellenmesi Ve Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, sy. 2 (Kasım 2023): 847-58. https://doi.org/10.17341/gazimmfd.1225810.
EndNote Candaş A, Oterkus E, İmrak CE (01 Kasım 2023) Enine darbe yükü altındaki tel halatların peridinamik teorisi ile modellenmesi ve analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 2 847–858.
IEEE A. Candaş, E. Oterkus, ve C. E. İmrak, “Enine darbe yükü altındaki tel halatların peridinamik teorisi ile modellenmesi ve analizi”, GUMMFD, c. 39, sy. 2, ss. 847–858, 2023, doi: 10.17341/gazimmfd.1225810.
ISNAD Candaş, Adem vd. “Enine Darbe yükü altındaki Tel halatların Peridinamik Teorisi Ile Modellenmesi Ve Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/2 (Kasım 2023), 847-858. https://doi.org/10.17341/gazimmfd.1225810.
JAMA Candaş A, Oterkus E, İmrak CE. Enine darbe yükü altındaki tel halatların peridinamik teorisi ile modellenmesi ve analizi. GUMMFD. 2023;39:847–858.
MLA Candaş, Adem vd. “Enine Darbe yükü altındaki Tel halatların Peridinamik Teorisi Ile Modellenmesi Ve Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 39, sy. 2, 2023, ss. 847-58, doi:10.17341/gazimmfd.1225810.
Vancouver Candaş A, Oterkus E, İmrak CE. Enine darbe yükü altındaki tel halatların peridinamik teorisi ile modellenmesi ve analizi. GUMMFD. 2023;39(2):847-58.