Polietilen glikol ve Alginat katkıları ile üretilen nano Titanyum dioksitin nanoakışkan olarak kullanımının incelenmesi
Yıl 2025,
, 331 - 342, 16.08.2024
Emel Akyol
,
Reyhan Arslan
,
Ahmet Selim Dalkılıç
Öz
Ülkemizde ve dünyada teknolojinin gelişmesi ile enerji ihtiyacı her geçen gün artmaktadır. Bu sebeple, ısı enerjisinin verimli kullanılması çok önemlidir. Az miktarlarda nanomalzeme kullanılarak oluşturulan nanoakışkan sistemler üstün termofiziksel özellikleri nedeni ile ısı transferini ve enerji verimliliğini artırmaktadırlar. Bu sebeple nanoakışkanların üretilmesi ve termofiziksel özelliklerinin incelenmesi önem arz etmektedir.
Bu çalışmada, yüksek sıcaklıkta oksidasyon yöntemi ile Polietilen glikol (PEG) ve Alginat katkı maddeleri varlığında titanium dioksit (TiO2) nanopartiküllerinin sentezlenmesi ve sentezlenen nano titanyum dioksitlerden farklı konsantrasyonlarda su bazlı nanoakışkan elde edilmesi amaçlanmıştır. Ayrıca, yüzey aktif madde türünün ve konsantrasyonunun nanoakışkanın stabilizasyonuna etkisini incelemek amacı ile farklı konsantrasyonlarda sodyum dodesil sülfat (SDS) ve arap zamkı kullanılmıştır. Sentezlenen TiO2 partiküllerinin karakterizasyonu için XRD, SEM, FTIR ve BET ölçümlerinden yararlanılmıştır. Nanoakışkanların önemli termofiziksel özelliklerinden stabilizasyonu ve yoğunluğu da bu çalışma kapsamında ölçülmüştür. Gerçekleştirilen deneysel çalışmalar sonucunda, Alginat katkı maddesi ile üretilen TiO2 nanopartiküllerinin, nanoakışkanın stabilizasyonunda PEG katkı maddesi ile üretilene göre daha başarılı olduğu görülmüştür.
Destekleyen Kurum
Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Proje Numarası
FYL-2020-3916
Teşekkür
Bu çalışmayı FYL-2020-3916 numaralı DOP projesi ile destekleyen Yıldız Teknik Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne teşekkür ederiz. Çalışmaya katkılarından dolayı Gökberk YALÇIN’ a ayrıca teşekkür ederiz.
Kaynakça
- 1. Arslan, R., Özdemir, V. A., Akyol, E., Dalkilic, A. S., Wongwises, S., Thermophysical properties of nanofluids, Current Nanoscience, 17 (5), 694-727, 2021.
- 2. Das, S.K., Choi, S.U., Patel, H.E., Heat transfer in nanofluids - a review, Heat Transfer Engineering, 27 (10), 3-19, 2006.
- 3. Turgut A., Sağlanmak Ş., Doğanay S., Experimental investigation on thermal conductivity and viscosity of nanofluids: Particle size effect, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (1), 95-103, 2016.
- 4. Mostafizur, R.M., Saidur, R., Aziz, A.A, Bhuiyan, M.H.U., Thermophysical properties of methanol based Al2O3 nanofluids, International Journal of Heat and Mass Transfer, 85, 414-419, 2015.
- 5. Chavan, D., Pise, A., Experimental investigation of effective viscosity and density of nanofluids, Materials Today: Proceedings,16, 504-515, 2019.
- 6. Selvakumar, R.D., Wu, J., A comprehensive model for effective density of nanofluids based on particle clustering and interfacial layer formation, Journal of Molecular Liquids, 292, 111415, 2019.
- 7. Sommers, A.D., Yerkes, K.L., Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid, Journal of Nanoparticle Research, 12 (3), 1003-1014, 2010.
- 8. Teng, T.P., Hung, Y.H., Estimation and experimental study of the density and specific heat for alumina nanofluid, Journal of Experimental Nanoscience, 9 (7), 707-718, 2014.
- 9. Srikant, R.R., Rao, D.N., Subrahmanyam, M.S., Krishna, V.P., Applicability of cutting fluids with nanoparticle inclusion as coolants in machining, Proceedings of the Institution of Mechanıcal Engıneers Part J-Journal of Engineerıng Tribology, 223 (2), 221-225, 2009.
- 10. Saidur, R., Leong, K.Y., Mohammed, H.A., A review on applications and challenges of nanofluids, Renewable & Sustainable Energy Reviews, 15 (3), 1646-1668, 2011.
- 11. Gürmen, S., Ebin, B., Nanopartiküller ve üretim yöntemleri-1, Metalurji Dergisi, 150, 31-38, 2008.
- 12. Senol, S., Akyol, E., Preparation and characterization of pH-sensitive hydrogels from photo-crosslinked poly (ethylene glycol) diacrylate incorporating titanium dioxide, Materials Science-Poland 38 (3), 443-449, 2020.
- 13. Köysüren Ö., Köysüren H.N., Preparation of polyvinyl alcohol composite nanofibers and solid-phase photocatalytic degradation of polyvinyl alcohol, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (4), 1411-1418, 2018.
- 14. Ali, A.R.I., Salam, B., A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application, SN Applied Sciences, 2 (10), 1636, 2020.
- 15. Narayan, M.R., Raturi, A., Deposition and characterisation of titanium dioxide films formed by electrophoretic deposition, International Journal of Materials Engineering Innovation, 3 (1), 17-31, 2012.
- 16. Yu, J.C., Yu, J., Ho, W., Zhang, L., Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation, Chemical Communications, 19, 1942-1943, 2001.
- 17. Zhu, Y.J., Chen, F., Microwave-Assisted preparation of inorganic nanostructures in liquid phase, Chemical Reviews, 114 (12), 6462-6555, 2014.
- 18. Choi, S., Eastman, M. D., Transparent, ultra-high thermal conductivity liquids, Science, 267 (5192), 1685-1687, 1995.
- 19. Li, J., Wang, L. Nanofluids: A promising thermal interface material for electronic devices, Journal of Thermal Science and Technology, 3 (3), 305-312, 2009.
- 20. Chen, X., Zhou, S., Zhang, Y., Preparation and characterization of TiO2 nanofluids for thermal management. Chinese Journal of Aeronautics, 23 (4), 609-615, 2010.
- 21. Zhang, X., Wang, X., Liu, Y., Preparation and characterization of Al2O3-water nanofluids for thermal management. Applied Thermal Engineering, 31 (15), 3303-3309, 2011.
- 22. Li, Z., Zhang, Y., Zhang, Y., Preparation and characterization of TiO2-water nanofluids with different surface modification agents for thermal management. Applied Thermal Engineering, 34 (1), 105-112, 2012.
- 23. Bushehri, M.K., Mohebbi, A., Rafsanjani, H.H., Prediction of thermal conductivity and viscosity of nanofluids by molecular dynamics simulation, Journal of Engineering Thermophysics, 25, 389–400, 2016.
- 24. Chamsa-ard W, Brundavanam S, Fung CC, Fawcett D, Poinern G., Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A Review. Nanomaterials. 7 (6):131, 2017.
- 25. Amrollahi, A., Rashidi, A.M., Emami Meibodi M., Kashefi K., Conduction heat transfer characteristics and dispersion behaviour of carbon nanofluids as a function of different parameters, Journal of Experimental Nanoscience, 4 (4), 347-363, 2009.
- 26. Naser A., Joao A., Teixeira, Abdulmajid A., A review on nanofluids: Fabrication, stability, and thermophysical properties, Journal of Nanomaterials, 1, 33, 2018.
- 27. Hwang, Y., Lee, J.K., Lee C.H., Jung, Y.M., Cheong, S.I., Lee, C.G., Ku, B.C., Jang S.P., Stability and thermal conductivity characteristics of nanofluids, Thermochimica Acta, 455 (1-2), 70-74, 2007.
- 28. Suganthi, K.S., Rajan, K.S., Metal oxide nanofluids: Review of formulation, thermophysical properties, mechanisms, and heat transfer performance, Renewable & Sustainable Energy Reviews, 76, 226-255, 2017.
- 29. Fidan T., Alyamaç Seydibeyoğlu E., Experimental investigation of thermophysical and rheological properties of water-based nanofluids containinggraphene nanoplatelets with different specific surface areas, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (1), 389–398, 2021.
- 30. Subaşı A., Erdem K., Prediction of specific heat of hybrid nanofluids using artificial neural networks, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (1), 377–387, 2022.
- 31. Yüksel T., İzgi A., Experimental investigation of the effects of nanofluid use in engine coolant on heat conduction and emissions at different engine speeds, Journal of the Faculty of Engineering and Architecture of Gazi University, 39 (1), 17–28, 2024.
- 32. 31.Gülüm, M., Bilgin, A., Regression Models for Predicting Some Important Fuel Properties of Corn and Hazelnut Oil Biodiesel–Diesel Fuel Blends, Exergetic, Energetic and Environmental Dimensions, Cilt 1, Editör: Dincer, I., Colpan, C.O., Kizilkan, O., Ed. Academic Press, US, 829-850, 2018.
- 33. Tristantini D., Mustikasari, R., Modification of TiO2 Nanoparticle with PEG and SiO2 for Anti-fogging and self-cleaning application, International Journal of Engineering and Technology, 11 (2), 80-85, 2011.
- 34. Chougala, L.S., Yatnatti, M.S., Linganagoudar, R.K., Kamble, R.R., Kadadevarmath, J.S., A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells, Journal of Nano- and Electronic Physics, 9 (4), 04005-1-04005-6, 2017.
- 35. Al-Amin, M., Dey, S.C., Rashid, T.U., Shamsuddin, S., Solar assisted photocatalytic degradation of reactive azo dyes in presence of anatase titanium dioxide, International Journal of Latest Research in Engineering and Technology (IJLRET), 2 (3), 14-21, 2016.
- 36. Samimi, S., Maghsoudnia, N., Eftekhari, R.B., Dorkoosh, F., Lipid-Based Nanoparticles for Drug Delivery Systems, Characterization and Biology of Nanomaterials for Drug Delivery, Cilt 1, Editör: Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Elsevier, US, 47-76, 2019.
- 37. Das S., Chaudhury, A., Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery, AAPS PharmSciTech, 12, 62-76, 2011.
- 38. Freitas C., Müller, R.H., Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLNTM) dispersions, International Journal of Pharmaceutics, 168 (2), 221-229, 1998.
- 39. Sass, R., Data Banks of Electrolytes, Encyclopedia of Applied Electrochemistry, Cilt 1, Editör: Kreysa, G., Ota, K., Savinell, R.F., Springer New York, US, 291-294, 2014.
- 40. Kaszuba, M., Corbett, J., Watson, F.M., Jones, A., High-concentration zeta potential measurements using light-scattering techniques, Philosophical Transactions of the Royal Society A, 368 (1927), 4439-4451, 2010.