Araştırma Makalesi
BibTex RIS Kaynak Göster

A multi-objective mathematical programming model for a novel capability-based university course timetabling problem

Yıl 2025, , 365 - 380, 16.08.2024
https://doi.org/10.17341/gazimmfd.1391236

Öz

The university course timetabling is a tactical level problem that almost all academic departments encounter before each semester. Nowadays, in order to meet some standards set by educational accreditation agencies within the scope of higher education quality assurance, it is required to generate efficient course timetables that ensure optimal distribution of basic capabilities. Actually, these capabilities should be first specified based on the learning outcomes defined by lecturers for each course, which are also associated with program outcomes and are aimed to be acquired by all of the students. Based on this motivation, a multi-objective mixed-integer non-linear programming model is developed for a novel capability-based course timetabling problem. Its validity and practicality are tested on a real-life application in D.E.U. Industrial Engineering Department. When the balanced solutions provided by compromise and fuzzy goal programming techniques were compared with the existing schedules of the previous years, it was revealed that significant improvements could be achieved in terms of several conflicting objectives (i.e., optimal capability distribution over the timetable, acquisition of maximum number/variety of different capabilities by the students, meeting expectations of lecturers by minimizing total temporal difference between the periods his/her courses are assigned, total penalty cost related to soft constraints).

Etik Beyan

This research does not require any ethical statement.

Destekleyen Kurum

Not available

Proje Numarası

Not available

Kaynakça

  • 1. Lindahl M., Mason A.J., Stidsen T., Sorensen M.: A strategic view of university timetabling. European Journal of Operational Research, 266 (1), 35–45, 2018.
  • 2. Baykasoğlu A., Subulan K., Capability-based distributed layout formation with or without demand and process flow information, Applied Soft Computing, 94, 106469, 2020.
  • 3. Subulan K., Varol B., Baykasoğlu A., Unequal-area capability-based facility layout design problem with a heuristic decomposition-based iterative mathematical programming approach, Expert Systems with Applications, 119199, 2023.
  • 4. Subulan K., Varol B., Baykasoğlu A., Designing robust capability-based distributed machine layouts with random machine availability and fuzzy demand/process flow information, Soft Computing, https://doi.org/10.1007/s00500-023-08756-y, 2023.
  • 5. Aslan A., Bakır I., Vis I.F.A., A dynamic thompson sampling hyper-heuristic framework for learning activity planning in personalized learning, European Journal of Operational Research, 286 (2), 673-688, 2020.
  • 6. Wouda N.A., Aslan A., Vis I.F.A., An adaptive large neighbourhood search metaheuristic for hourly learning activity planning in personalised learning, Computers & Operations Research, 151, 106089, 2023.
  • 7. Abdullah S., Turabieh H., McCollum B., McMullan P., A hybrid metaheuristic approach to the university course timetabling problem, Journal of Heuristics, 18, 1-23, 2012.
  • 8. Tavakoli M.M., Shirouyehzad H., Lotfi F.H., Najafi S.H., Proposing a novel heuristic algorithm for university course timetabling problem with the quality of courses rendered approach; a case study, Alexandria Engineering Journal, 59, 3355-3367, 2020.
  • 9. Gülcü A., Akkan C., Robust university course timetabling problem subject to single and multiple disruptions, European Journal of Operational Research, 283, 630–646, 2020.
  • 10. Mokhtari M., Sarashk M.V., Asadpour M., Saeidi N., Boyer O., Developing a model for the university course timetabling problem: A case study, Complexity, 9940866, 2021.
  • 11. Badoni R.P., Gupta D.K., Mishra P., A new hybrid algorithm for university course timetabling problem using events based on groupings of students, Computers & Industrial Engineering, 78, 12-25, 2014.
  • 12. Song T., Liu S., Tang X., Peng X., Chen M., An iterated local search algorithm for the university course timetabling problem, Applied Soft Computing, 68, 597-608, 2018.
  • 13. Thepphakorn T., Pongcharoen P., Performance improvement strategies on Cuckoo Search algorithms for solving the university course timetabling problem, Expert Systems with Applications, 161, 113732, 2020.
  • 14. Rappos E., Thiémard E., Robert S., Hêche J.F., A mixed-integer programming approach for solving university course timetabling problems, Journal of Scheduling, 25, 391–404, 2022.
  • 15. Subulan K., Gürsaç A., A multiple objective optimization model for a novel capability-based university course timetabling problem: A case study at DEU industrial engineering department, 12th International Statistics Days Conference, İzmir-Türkiye, 4, 13-16 Ekim, 2022.
  • 16. Song, T., Chen M., Xu Y., Wang D., Song X., Tang X., Competition-guided multi-neighborhood local search algorithm for the university course timetabling problem, Applied Soft Computing, 110, 107624, 2021.
  • 17. Mallari, C.B., San Juan, J.L., Li, R., The university coursework timetabling problem: An optimization approach to synchronizing course calendars, Computers & Industrial Engineering, 184, 109561, 2023.
  • 18. Babaei H., Karimpour J., Hadidi A., A survey of approaches for university course timetabling problem, Computers & Industrial Engineering, 86, 43-59, 2015.
  • 19. Chen M.C., Sze S.N., Goh S.L., Sabar N.R., Kendall G., A survey of university course timetabling problem: Perspectives, trends and opportunities, IEEE Access, 9, 106515-106529, 2021.
  • 20. Ceschia S., Gaspero, L.D., Schaerf A., Educational timetabling: Problems, benchmarks, and state-of-the-art results, European Journal of Operational Research, 308, 1–18, 2023.
  • 21. Oral M., Kettani O., A linearization procedure for quadratic and cubic mixed-integer problems, Operations Research, 40, 109-116, 1992.
  • 22. Winston W.L., Operations research applications and algorithms, 4th Edition, Wiley, USA, 2004.
  • 23. Baykasoğlu A., Subulan K., A multi-objective sustainable load planning model for intermodal transportation networks with a real-life application, Transportation Research Part E, 95, 207-247, 2016.
  • 24. Subulan K., Scheduling multi-objective enterprise resource planning implementation projects under human resource constraints and uncertainty, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1469-1485, 2020.
  • 25. Gan, J., Colletti, J.P., Kolison, S.H., A compromise programming approach to integrated natural resource management, Editör: Sessions, J., Brodie, J.D, Management Systems for a Global Economy with Global Resource Concerns. Oregon State University, 378–386, 1995.
  • 26. Baker, K.R., Optimization Modelling with Spreadsheets, Wiley & Sons Inc., New Jersey, ABD, 2015. 27. Chen L.H., Tsai, F.C., Fuzzy goal programming with different importance and priorities, European Journal of Operational Research, 133 (3), 548-556, 2001.
  • 28. Yazıcı E., Eren T., Alakaş H.M., Personnel scheduling problem in law systems: The example of expropriation cases, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 299-308, 2023.
  • 29. Stillwell W.G., Seaver D.A., Edwards W., A comparison of weight approximation techniques in multi attribute utility decision-making, Organizational Behavior and Human Performance, 28, 62-77, 1981.

Yeni bir yetenek tabanlı üniversite ders zaman çizelgeleme problemi için çok amaçlı bir matematiksel programlama modeli

Yıl 2025, , 365 - 380, 16.08.2024
https://doi.org/10.17341/gazimmfd.1391236

Öz

Üniversite ders zaman çizelgeleme, hemen hemen tüm akademik birimlerin her yarıyıl öncesinde çözüm üretmesi gereken taktiksel seviyede bir problemdir. Günümüzde, Yüksek Öğretim kalite güvencesi kapsamında çeşitli eğitim programı değerlendirme/akreditasyon kuruluşlarının belirlediği standartları sağlamak amacıyla, akademik birimlerin tanımladığı program çıktılarının tüm öğrencilere kazandırılabilmesi için bu çıktılarla ilişkilendirilen ve her ders için öğretim üyeleri tarafından tanımlanan öğrenim çıktıları/kazanımları dikkate alınarak temel teknik yeteneklerin belirlenmesi ve bu yeteneklerin ders programında optimal dağıtımını sağlayan etkin ve efektif ders programlarının hazırlanması gerekmektedir. Bu araştırma motivasyonuna dayanarak bu çalışmada, yeni bir yetenek tabanlı ders programı hazırlama yaklaşımı bilimsel yazında ilk defa ele alınarak; problemin çözümü için çok amaçlı, doğrusal olmayan bir karışık tamsayılı eniyileme modeli geliştirilmiştir. Modelin doğruluğu ve geçerliliği, D.E.Ü. Endüstri Mühendisliği Bölümü’nün bahar yarıyılı eğitim-öğretim dönemine ait bir gerçek hayat uygulaması üzerinde test edilmiştir. Uzlaşık programlama ve bulanık hedef programlama (BHP) tekniklerinden elde edilen uzlaşık ders programları, geçmiş yıllara ait mevcut ders programları ile karşılaştırıldığında, çelişen çeşitli hedefler (Ders programı üzerinde optimal yetenek dağıtımının sağlanması, öğrencilere maksimum sayıda ve çeşitte farklı temel yeteneklerin kazandırılması, öğretim üyelerinin tercihleri doğrultusunda derslerin atandığı periyotlar arasındaki toplam zamansal farkın en küçüklenerek beklenti/isteklerinin karşılanması, esnek kısıtların ihlal edilmesi durumunda maruz kalınan ceza maliyeti) açısından önemli ölçüde iyileştirmelerin sağlanabildiği ortaya konulmuştur.

Etik Beyan

Etik kurul izni gerektiren araştırma mevcut değildir.

Destekleyen Kurum

Bulunmamaktadır.

Proje Numarası

Not available

Teşekkür

Bilimsel yazında, tesis içi yerleşim düzeni tasarımı alanında, yetenek tabanlı dağıtık yerleşim düzenlemesi tekniğini ilk olarak ortaya atarak bu çalışmaya ilham kaynağı olan Prof. Dr. Adil Baykasoğlu’na ve Dokuz Eylül Üniversitesi Endüstri Mühendisliği Bölüm Başkanı Prof. Dr. Şeyda A. Yıldız ve Bölüm Sekreteri Nazan Güney’e veri toplama, doğrulama ve uygulama aşamalarındaki desteklerinden ötürü teşekkürü bir borç bilirim.

Kaynakça

  • 1. Lindahl M., Mason A.J., Stidsen T., Sorensen M.: A strategic view of university timetabling. European Journal of Operational Research, 266 (1), 35–45, 2018.
  • 2. Baykasoğlu A., Subulan K., Capability-based distributed layout formation with or without demand and process flow information, Applied Soft Computing, 94, 106469, 2020.
  • 3. Subulan K., Varol B., Baykasoğlu A., Unequal-area capability-based facility layout design problem with a heuristic decomposition-based iterative mathematical programming approach, Expert Systems with Applications, 119199, 2023.
  • 4. Subulan K., Varol B., Baykasoğlu A., Designing robust capability-based distributed machine layouts with random machine availability and fuzzy demand/process flow information, Soft Computing, https://doi.org/10.1007/s00500-023-08756-y, 2023.
  • 5. Aslan A., Bakır I., Vis I.F.A., A dynamic thompson sampling hyper-heuristic framework for learning activity planning in personalized learning, European Journal of Operational Research, 286 (2), 673-688, 2020.
  • 6. Wouda N.A., Aslan A., Vis I.F.A., An adaptive large neighbourhood search metaheuristic for hourly learning activity planning in personalised learning, Computers & Operations Research, 151, 106089, 2023.
  • 7. Abdullah S., Turabieh H., McCollum B., McMullan P., A hybrid metaheuristic approach to the university course timetabling problem, Journal of Heuristics, 18, 1-23, 2012.
  • 8. Tavakoli M.M., Shirouyehzad H., Lotfi F.H., Najafi S.H., Proposing a novel heuristic algorithm for university course timetabling problem with the quality of courses rendered approach; a case study, Alexandria Engineering Journal, 59, 3355-3367, 2020.
  • 9. Gülcü A., Akkan C., Robust university course timetabling problem subject to single and multiple disruptions, European Journal of Operational Research, 283, 630–646, 2020.
  • 10. Mokhtari M., Sarashk M.V., Asadpour M., Saeidi N., Boyer O., Developing a model for the university course timetabling problem: A case study, Complexity, 9940866, 2021.
  • 11. Badoni R.P., Gupta D.K., Mishra P., A new hybrid algorithm for university course timetabling problem using events based on groupings of students, Computers & Industrial Engineering, 78, 12-25, 2014.
  • 12. Song T., Liu S., Tang X., Peng X., Chen M., An iterated local search algorithm for the university course timetabling problem, Applied Soft Computing, 68, 597-608, 2018.
  • 13. Thepphakorn T., Pongcharoen P., Performance improvement strategies on Cuckoo Search algorithms for solving the university course timetabling problem, Expert Systems with Applications, 161, 113732, 2020.
  • 14. Rappos E., Thiémard E., Robert S., Hêche J.F., A mixed-integer programming approach for solving university course timetabling problems, Journal of Scheduling, 25, 391–404, 2022.
  • 15. Subulan K., Gürsaç A., A multiple objective optimization model for a novel capability-based university course timetabling problem: A case study at DEU industrial engineering department, 12th International Statistics Days Conference, İzmir-Türkiye, 4, 13-16 Ekim, 2022.
  • 16. Song, T., Chen M., Xu Y., Wang D., Song X., Tang X., Competition-guided multi-neighborhood local search algorithm for the university course timetabling problem, Applied Soft Computing, 110, 107624, 2021.
  • 17. Mallari, C.B., San Juan, J.L., Li, R., The university coursework timetabling problem: An optimization approach to synchronizing course calendars, Computers & Industrial Engineering, 184, 109561, 2023.
  • 18. Babaei H., Karimpour J., Hadidi A., A survey of approaches for university course timetabling problem, Computers & Industrial Engineering, 86, 43-59, 2015.
  • 19. Chen M.C., Sze S.N., Goh S.L., Sabar N.R., Kendall G., A survey of university course timetabling problem: Perspectives, trends and opportunities, IEEE Access, 9, 106515-106529, 2021.
  • 20. Ceschia S., Gaspero, L.D., Schaerf A., Educational timetabling: Problems, benchmarks, and state-of-the-art results, European Journal of Operational Research, 308, 1–18, 2023.
  • 21. Oral M., Kettani O., A linearization procedure for quadratic and cubic mixed-integer problems, Operations Research, 40, 109-116, 1992.
  • 22. Winston W.L., Operations research applications and algorithms, 4th Edition, Wiley, USA, 2004.
  • 23. Baykasoğlu A., Subulan K., A multi-objective sustainable load planning model for intermodal transportation networks with a real-life application, Transportation Research Part E, 95, 207-247, 2016.
  • 24. Subulan K., Scheduling multi-objective enterprise resource planning implementation projects under human resource constraints and uncertainty, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1469-1485, 2020.
  • 25. Gan, J., Colletti, J.P., Kolison, S.H., A compromise programming approach to integrated natural resource management, Editör: Sessions, J., Brodie, J.D, Management Systems for a Global Economy with Global Resource Concerns. Oregon State University, 378–386, 1995.
  • 26. Baker, K.R., Optimization Modelling with Spreadsheets, Wiley & Sons Inc., New Jersey, ABD, 2015. 27. Chen L.H., Tsai, F.C., Fuzzy goal programming with different importance and priorities, European Journal of Operational Research, 133 (3), 548-556, 2001.
  • 28. Yazıcı E., Eren T., Alakaş H.M., Personnel scheduling problem in law systems: The example of expropriation cases, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 299-308, 2023.
  • 29. Stillwell W.G., Seaver D.A., Edwards W., A comparison of weight approximation techniques in multi attribute utility decision-making, Organizational Behavior and Human Performance, 28, 62-77, 1981.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Endüstri Mühendisliği, Üretimde Optimizasyon
Bölüm Makaleler
Yazarlar

Kemal Subulan 0000-0001-7640-1976

Proje Numarası Not available
Erken Görünüm Tarihi 1 Temmuz 2024
Yayımlanma Tarihi 16 Ağustos 2024
Gönderilme Tarihi 15 Kasım 2023
Kabul Tarihi 19 Mart 2024
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Subulan, K. (2024). Yeni bir yetenek tabanlı üniversite ders zaman çizelgeleme problemi için çok amaçlı bir matematiksel programlama modeli. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(1), 365-380. https://doi.org/10.17341/gazimmfd.1391236
AMA Subulan K. Yeni bir yetenek tabanlı üniversite ders zaman çizelgeleme problemi için çok amaçlı bir matematiksel programlama modeli. GUMMFD. Ağustos 2024;40(1):365-380. doi:10.17341/gazimmfd.1391236
Chicago Subulan, Kemal. “Yeni Bir Yetenek Tabanlı üniversite Ders Zaman çizelgeleme Problemi için çok amaçlı Bir Matematiksel Programlama Modeli”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 1 (Ağustos 2024): 365-80. https://doi.org/10.17341/gazimmfd.1391236.
EndNote Subulan K (01 Ağustos 2024) Yeni bir yetenek tabanlı üniversite ders zaman çizelgeleme problemi için çok amaçlı bir matematiksel programlama modeli. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 1 365–380.
IEEE K. Subulan, “Yeni bir yetenek tabanlı üniversite ders zaman çizelgeleme problemi için çok amaçlı bir matematiksel programlama modeli”, GUMMFD, c. 40, sy. 1, ss. 365–380, 2024, doi: 10.17341/gazimmfd.1391236.
ISNAD Subulan, Kemal. “Yeni Bir Yetenek Tabanlı üniversite Ders Zaman çizelgeleme Problemi için çok amaçlı Bir Matematiksel Programlama Modeli”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/1 (Ağustos 2024), 365-380. https://doi.org/10.17341/gazimmfd.1391236.
JAMA Subulan K. Yeni bir yetenek tabanlı üniversite ders zaman çizelgeleme problemi için çok amaçlı bir matematiksel programlama modeli. GUMMFD. 2024;40:365–380.
MLA Subulan, Kemal. “Yeni Bir Yetenek Tabanlı üniversite Ders Zaman çizelgeleme Problemi için çok amaçlı Bir Matematiksel Programlama Modeli”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 1, 2024, ss. 365-80, doi:10.17341/gazimmfd.1391236.
Vancouver Subulan K. Yeni bir yetenek tabanlı üniversite ders zaman çizelgeleme problemi için çok amaçlı bir matematiksel programlama modeli. GUMMFD. 2024;40(1):365-80.