Araştırma Makalesi
BibTex RIS Kaynak Göster

Birbirini takip eden iki aracın aralarında bulunan mesafenin aerodinamik etkisinin sayısal modellemesi

Yıl 2025, Cilt: 40 Sayı: 4, 2613 - 2626, 31.12.2025
https://doi.org/10.17341/gazimmfd.1561876

Öz

Bu çalışma, konvoy hâlinde seyreden kara taşıtları arasındaki aerodinamik etkileşimleri, Ahmed Body referans geometrisi üzerinden sistematik olarak analiz etmiştir. Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemi kullanılarak yürütülen sayısal simülasyon çalışmalarında, lider ve takip araç konfigürasyonları farklı takip mesafeleri (0,125 L, 0,25 L, 0,50 L, 1,0 L, 2,0 L) için incelenmiştir. Başlangıçta tekil Ahmed Body modeli için ağdan bağımsızlık çalışması ile elde edilen sürüklenme katsayısı (Cd) literatürde bildirilen deneysel sonuçlarla uyum göstermiştir. Doğrulama sonrasında, konvoy araç senaryosunda iz yapısının aerodinamik etkileri ayrıntılı biçimde değerlendirilmiştir. Analiz sonuçları, takip aracının her durumda lider araca kıyasla daha yüksek Cd değerleri sergilediğini ve iz bölgesinden kaynaklanan türbülanslı yapıların bu sonucu doğrudan etkilediğini göstermektedir. Lider araç Cd katsayısında ise takip mesafesi azaldıkça belirgin bir azalma gözlenmiş, bu durum iz bölgesindeki geri besleme basıncı ile ilişkilendirilmiştir. Yüzey basınç (Cp) ve hız dağılımı analizleri, özellikle 0,25 L mesafesinde lider araç arkasında pozitif, takip araç önünde negatif basınç etkileri yarattığını ortaya koymuştur. Normalize edilmiş Cd/Cd,izole ve Cp/Cp,izole oranları üzerinden yapılan karşılaştırmalı değerlendirmelerde, mevcut literatürle benzer eğilimler gözlenmiştir. Elde edilen bulgular, konvoy aerodinamiğine yönelik tasarım ve optimizasyon çalışmalarına fiziksel olarak tutarlı bir temel sunmaktadır.

Etik Beyan

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim. Herhangi bir zamanda, çalışmayla ilgili yaptığım bu beyana aykırı bir durumun saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu bildiririm.

Destekleyen Kurum

Karsan Otomotiv Sanayii ve Tic. A.Ş.

Teşekkür

Bu çalışmanın gerçekleşmesinde sağladıkları değerli katkılar ve desteklerinden dolayı Karsan Otomotiv Sanayii ve Tic. A.Ş.’ye içten teşekkürlerimi sunarım.

Kaynakça

  • 1. Horacio J. A., Juan M. G., Francisco E., Norberto M. N., Aerodynamic study of a moving Ahmed Body by numerical simulation, Journal of Wind Engineering & Industrial Aerodynamics, 245 (105635), 1-19, 2024.
  • 2. Kang N., Effect of approach flow condition on the wake of an Ahmed Body, Yüksek Lisans Tezi, Windsor Üniversitesi, Lisansüstü Eğitim Fakültesi, Windsor, 2021.
  • 3. Lienhart, H., Stoots, C., Becker, S., Flow and turbulence structures in the wake of a simplified car model (Ahmed modell), Notes on Numerical Fluid Mechanics (NNFM), Cilt 77, Editör: Hilbig H., Heinemann H.-J., Rist U., Wanger S., Springer, Berlin, Heidelberg, 323-330, 2002.
  • 4. Strachan R., Knowles K., Lawson N., The vortex structure behind an Ahmed reference model in the presence of a moving ground plane, Exp. Fluids, 42 (5), 659-669, 2007.
  • 5. Rossitto G., Sicot C., Ferrand V., Borée J., Harambat F., Influence of afterbody rounding on the pressure distribution over a fastback vehicle, Exp. Fluids, 57 (3), 1-12, 2016.
  • 6. Ebrahim H., Dominy R., Wake and surface pressure analysis of vehicles in platoon, Journal of Wind Engineering & Industrial Aerodynamics, 201 (104144), 1-15, 2020.
  • 7. Zhang J., Li Z., Bai B., Zhang L., Analysis and Simulation of Air Drag in Vehicles Close-following, Applied Mechanics and Materials, 152-154, 1438-1442, 2012.
  • 8. Aulakh D.J.S., Effect of underbody diffuser on the aerodynamic drag of vehicles in convoy, Cogent Engineering, 3 (1), 1230310, 2016.
  • 9. Robertson F.H., Bourriez F., He M., Soper D., Baker C., Hemida H., Sterling M., An experimental investigation of the aerodynamic flows created by lorries travelling in a long platoon, Journal of Wind Engineering & Industrial Aerodynamics, 193 (103966), 1-13, 2019.
  • 10. Bruneau C.-H., Khadra K., Mortazavi I., Flow analysis of square-back simplified vehicles in platoon. International Journal of Heat and Fluid Flow, 66, 43–59, 2017.
  • 11. Ağır A., Tek ve ardışık konumlanmış model kara taşıtı etrafındaki akış yapısının deneysel ve sayısal olarak incelenmesi, Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Sivas, 2011.
  • 12. Abbaspour, M., & Jahanmiri, M., Experimental investigation of drag reduction on Ahmed car model using a combination of active flow control, International Journal of Automotive Engineering, 1 (2), 111–118, 2011.
  • 13. Fares, E., Unsteady flow simulation of the Ahmed reference body using a lattice Boltzmann approach, Computers & Fluids, 35 (8–9), 940–950, 2016
  • 14. Aksoy M.H., Okbaz A., Yağmur S., Doğan S., A comparison of RANS-based turbulence modeling and PIV experiments for flow over a simplified road vehicle, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1481-1492, 2022.
  • 15. Zafer B., Haskaraman F., Numerical investigation of headwind and crosswind conditions of Ahmed body, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 215–229, 2017.
  • 16. Ahmed S. R., Ramm G., Faltin G., Some Salient Features of the Time-Averaged Ground Vehicle Wake, SAE Technical Paper Series, 840300, 1984.
  • 17. Gopala A., A study of automotive aerodynamics using cfd, Yüksek Lisans Tezi, Kettering University, Mühendislik Fakültesi, Michigan, 2021.
  • 18. Veeraghanta B. K., Numerical investigations on the aerodynamics of overtaking maneuvers using simplified road vehicle models, Yüksek Lisan Tezi, North Carolina Üniversitesi, Mühendislik Fakültesi, Charlotte, 2021.
  • 19. Banga S., Zunaid Md., Ansari N. A., Sharma S., Dungriyal R. S., CFD Simulation of Flow around External Vehicle: Ahmed Body, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 12 (4), 87-94, 2015.
  • 20. Pagliarella, R. M., On the aerodynamic performance of automotive vehicle platoons featuring pre and post-critical leading forms, Doktora Tezi, RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Melbourne, 2009.
  • 21. Launder, B. E., & Spalding, D. B., The numerical computation of turbulent flows, Computational Methods in Applied Mechanical Engineering, 3 (2), 269–289, 1974.
  • 22. Versteeg, H. K., & Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2nd ed.), Pearson Education, Glasgow, UK, 2007.
  • 23. Hughes, T. CFD study of flow over a simplified car (Ahmed Body) using different turbulence models, researchgate: https://www.researchgate.net/publication/325451944.2018. 03.06.2025.
  • 24. Şumnu, A., Shape modification of Ahmed Body to reduce drag coefficient and turbulence models comparison, NOHU Journal of Engineering Sciences, 10 (2), 824–832, 2021.
  • 25. Altınışık, A., Yemenici, O., Umur, H., Aerodynamic analysis of a passenger car at yaw angle and two-vehicle platoon, ASME Journal of Fluids Engineering, 137 (12), 1–10, 2015.
  • 26. Bangar, S. R., Gadekar, S. S., CFD analysis and optimization of geometrical modifications of Ahmed Body, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 12 (5), 37–49, 2015.
  • 27. Kim, S. W., Choudhury, D., A near-wall treatment using wall functions sensitized to pressure gradient, Fluent Inc. Technical Memo, 217,273-280, 1995.
  • 28. Luo, J., Mi, K., Tan, D., Zhang, Z., Li, M., Qing, J., & Huang, H., Investigation of the aerodynamic characteristics of platoon vehicles based on Ahmed Body, Shock and Vibration, 2022 (1), 3269604, 2022.
  • 29. Grandemange, M., Gohlke, M., Cadot, O., Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability, Journal of Fluid Mechanics, 722, 51–84, 2013.
  • 30. Zabat, M., Stabile, N., Frascaroli, J., & Browand, F. (1995). The aerodynamic performance of platoons: Final report. PATH Research Report UCB-ITS-PRR-95-23. https://escholarship.org/uc/item/8ph187fw#main. 1995. 03.06.2025

Numerical modelling of the aerodynamic effect of the distance between two vehicles following each other

Yıl 2025, Cilt: 40 Sayı: 4, 2613 - 2626, 31.12.2025
https://doi.org/10.17341/gazimmfd.1561876

Öz

This study presents a systematic investigation of aerodynamic interactions between road vehicles traveling in convoys, utilizing the Ahmed Body as a reference geometry. Numerical simulations were conducted using Computational Fluid Dynamics (CFD) to examine the leader-trailing vehicle configuration at various inter-vehicle distances (0.125 L, 0.25 L, 0.50 L, 1.0 L, and 2.0 L). Initially, a mesh independence study was performed for the isolated Ahmed Body model, and the resulting drag coefficient (Cd) showed strong agreement with experimentally reported values in the literature. Following this validation, the aerodynamic influence of wake structures in a convoy scenario was analyzed in detail. The simulation results revealed that the trailing vehicle consistently exhibited higher drag coefficients compared to the leader vehicle, primarily due to turbulent wake structures impinging on its frontal area. In contrast, the drag coefficient of the leader vehicle was observed to decrease significantly at reduced inter-vehicle distances, attributed to the back-pressure effects generated by the follower vehicle within the wake region. Surface pressure (Cp) and velocity distributions demonstrated that, particularly at 0.25 L spacing, the wake induced a positive pressure zone behind the leader and a negative pressure zone ahead of the follower. Comparative evaluations based on normalized Cd/Cd,isolated and Cp/Cp,isolated ratios indicated consistent trends with existing literature findings. The outcomes of this study provide a physically coherent foundation for future aerodynamic design and optimization efforts targeting platooning and convoy scenarios.

Kaynakça

  • 1. Horacio J. A., Juan M. G., Francisco E., Norberto M. N., Aerodynamic study of a moving Ahmed Body by numerical simulation, Journal of Wind Engineering & Industrial Aerodynamics, 245 (105635), 1-19, 2024.
  • 2. Kang N., Effect of approach flow condition on the wake of an Ahmed Body, Yüksek Lisans Tezi, Windsor Üniversitesi, Lisansüstü Eğitim Fakültesi, Windsor, 2021.
  • 3. Lienhart, H., Stoots, C., Becker, S., Flow and turbulence structures in the wake of a simplified car model (Ahmed modell), Notes on Numerical Fluid Mechanics (NNFM), Cilt 77, Editör: Hilbig H., Heinemann H.-J., Rist U., Wanger S., Springer, Berlin, Heidelberg, 323-330, 2002.
  • 4. Strachan R., Knowles K., Lawson N., The vortex structure behind an Ahmed reference model in the presence of a moving ground plane, Exp. Fluids, 42 (5), 659-669, 2007.
  • 5. Rossitto G., Sicot C., Ferrand V., Borée J., Harambat F., Influence of afterbody rounding on the pressure distribution over a fastback vehicle, Exp. Fluids, 57 (3), 1-12, 2016.
  • 6. Ebrahim H., Dominy R., Wake and surface pressure analysis of vehicles in platoon, Journal of Wind Engineering & Industrial Aerodynamics, 201 (104144), 1-15, 2020.
  • 7. Zhang J., Li Z., Bai B., Zhang L., Analysis and Simulation of Air Drag in Vehicles Close-following, Applied Mechanics and Materials, 152-154, 1438-1442, 2012.
  • 8. Aulakh D.J.S., Effect of underbody diffuser on the aerodynamic drag of vehicles in convoy, Cogent Engineering, 3 (1), 1230310, 2016.
  • 9. Robertson F.H., Bourriez F., He M., Soper D., Baker C., Hemida H., Sterling M., An experimental investigation of the aerodynamic flows created by lorries travelling in a long platoon, Journal of Wind Engineering & Industrial Aerodynamics, 193 (103966), 1-13, 2019.
  • 10. Bruneau C.-H., Khadra K., Mortazavi I., Flow analysis of square-back simplified vehicles in platoon. International Journal of Heat and Fluid Flow, 66, 43–59, 2017.
  • 11. Ağır A., Tek ve ardışık konumlanmış model kara taşıtı etrafındaki akış yapısının deneysel ve sayısal olarak incelenmesi, Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Sivas, 2011.
  • 12. Abbaspour, M., & Jahanmiri, M., Experimental investigation of drag reduction on Ahmed car model using a combination of active flow control, International Journal of Automotive Engineering, 1 (2), 111–118, 2011.
  • 13. Fares, E., Unsteady flow simulation of the Ahmed reference body using a lattice Boltzmann approach, Computers & Fluids, 35 (8–9), 940–950, 2016
  • 14. Aksoy M.H., Okbaz A., Yağmur S., Doğan S., A comparison of RANS-based turbulence modeling and PIV experiments for flow over a simplified road vehicle, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1481-1492, 2022.
  • 15. Zafer B., Haskaraman F., Numerical investigation of headwind and crosswind conditions of Ahmed body, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 215–229, 2017.
  • 16. Ahmed S. R., Ramm G., Faltin G., Some Salient Features of the Time-Averaged Ground Vehicle Wake, SAE Technical Paper Series, 840300, 1984.
  • 17. Gopala A., A study of automotive aerodynamics using cfd, Yüksek Lisans Tezi, Kettering University, Mühendislik Fakültesi, Michigan, 2021.
  • 18. Veeraghanta B. K., Numerical investigations on the aerodynamics of overtaking maneuvers using simplified road vehicle models, Yüksek Lisan Tezi, North Carolina Üniversitesi, Mühendislik Fakültesi, Charlotte, 2021.
  • 19. Banga S., Zunaid Md., Ansari N. A., Sharma S., Dungriyal R. S., CFD Simulation of Flow around External Vehicle: Ahmed Body, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 12 (4), 87-94, 2015.
  • 20. Pagliarella, R. M., On the aerodynamic performance of automotive vehicle platoons featuring pre and post-critical leading forms, Doktora Tezi, RMIT University, School of Aerospace, Mechanical and Manufacturing Engineering, Melbourne, 2009.
  • 21. Launder, B. E., & Spalding, D. B., The numerical computation of turbulent flows, Computational Methods in Applied Mechanical Engineering, 3 (2), 269–289, 1974.
  • 22. Versteeg, H. K., & Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2nd ed.), Pearson Education, Glasgow, UK, 2007.
  • 23. Hughes, T. CFD study of flow over a simplified car (Ahmed Body) using different turbulence models, researchgate: https://www.researchgate.net/publication/325451944.2018. 03.06.2025.
  • 24. Şumnu, A., Shape modification of Ahmed Body to reduce drag coefficient and turbulence models comparison, NOHU Journal of Engineering Sciences, 10 (2), 824–832, 2021.
  • 25. Altınışık, A., Yemenici, O., Umur, H., Aerodynamic analysis of a passenger car at yaw angle and two-vehicle platoon, ASME Journal of Fluids Engineering, 137 (12), 1–10, 2015.
  • 26. Bangar, S. R., Gadekar, S. S., CFD analysis and optimization of geometrical modifications of Ahmed Body, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 12 (5), 37–49, 2015.
  • 27. Kim, S. W., Choudhury, D., A near-wall treatment using wall functions sensitized to pressure gradient, Fluent Inc. Technical Memo, 217,273-280, 1995.
  • 28. Luo, J., Mi, K., Tan, D., Zhang, Z., Li, M., Qing, J., & Huang, H., Investigation of the aerodynamic characteristics of platoon vehicles based on Ahmed Body, Shock and Vibration, 2022 (1), 3269604, 2022.
  • 29. Grandemange, M., Gohlke, M., Cadot, O., Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability, Journal of Fluid Mechanics, 722, 51–84, 2013.
  • 30. Zabat, M., Stabile, N., Frascaroli, J., & Browand, F. (1995). The aerodynamic performance of platoons: Final report. PATH Research Report UCB-ITS-PRR-95-23. https://escholarship.org/uc/item/8ph187fw#main. 1995. 03.06.2025
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sayısal Modelleme ve Mekanik Karakterizasyon
Bölüm Araştırma Makalesi
Yazarlar

İbrahim Taş 0000-0001-5014-4705

Orhan Dedeoğlu 0000-0001-7791-6509

Gönderilme Tarihi 5 Ekim 2024
Kabul Tarihi 7 Ağustos 2025
Erken Görünüm Tarihi 27 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 4

Kaynak Göster

APA Taş, İ., & Dedeoğlu, O. (2025). Birbirini takip eden iki aracın aralarında bulunan mesafenin aerodinamik etkisinin sayısal modellemesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(4), 2613-2626. https://doi.org/10.17341/gazimmfd.1561876
AMA Taş İ, Dedeoğlu O. Birbirini takip eden iki aracın aralarında bulunan mesafenin aerodinamik etkisinin sayısal modellemesi. GUMMFD. Aralık 2025;40(4):2613-2626. doi:10.17341/gazimmfd.1561876
Chicago Taş, İbrahim, ve Orhan Dedeoğlu. “Birbirini takip eden iki aracın aralarında bulunan mesafenin aerodinamik etkisinin sayısal modellemesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 4 (Aralık 2025): 2613-26. https://doi.org/10.17341/gazimmfd.1561876.
EndNote Taş İ, Dedeoğlu O (01 Aralık 2025) Birbirini takip eden iki aracın aralarında bulunan mesafenin aerodinamik etkisinin sayısal modellemesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 4 2613–2626.
IEEE İ. Taş ve O. Dedeoğlu, “Birbirini takip eden iki aracın aralarında bulunan mesafenin aerodinamik etkisinin sayısal modellemesi”, GUMMFD, c. 40, sy. 4, ss. 2613–2626, 2025, doi: 10.17341/gazimmfd.1561876.
ISNAD Taş, İbrahim - Dedeoğlu, Orhan. “Birbirini takip eden iki aracın aralarında bulunan mesafenin aerodinamik etkisinin sayısal modellemesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/4 (Aralık2025), 2613-2626. https://doi.org/10.17341/gazimmfd.1561876.
JAMA Taş İ, Dedeoğlu O. Birbirini takip eden iki aracın aralarında bulunan mesafenin aerodinamik etkisinin sayısal modellemesi. GUMMFD. 2025;40:2613–2626.
MLA Taş, İbrahim ve Orhan Dedeoğlu. “Birbirini takip eden iki aracın aralarında bulunan mesafenin aerodinamik etkisinin sayısal modellemesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 4, 2025, ss. 2613-26, doi:10.17341/gazimmfd.1561876.
Vancouver Taş İ, Dedeoğlu O. Birbirini takip eden iki aracın aralarında bulunan mesafenin aerodinamik etkisinin sayısal modellemesi. GUMMFD. 2025;40(4):2613-26.