Araştırma Makalesi
BibTex RIS Kaynak Göster

Bor ile yapılan tane inceltmenin Al-30Zn alaşımının mikroyapı ve mekanik özelliklerine etkisi

Yıl 2019, , 523 - 534, 26.03.2019
https://doi.org/10.17341/gazimmfd.416512

Öz

Bu çalışmada bir adet ikili alüminyum-çinko (Al-30Zn) alaşımı ve dokuz adet üçlü alüminyum-çinko-bor [Al-30Zn-(0.01-2)B] alaşımı kokil kalıba döküm yöntemiyle üretildi. Üretilen alaşımların yapısal özellikleri ışık ve elektron mikroskobu incelemeleriyle, sertlik ve mekanik özellikleri ise üniversal test yöntemleriyle belirlendi. İkili Al-30Zn alaşımının içyapısının α dendritleri ile bu dendiritlerin etrafını saran η fazından oluştuğu, bu alaşıma bor ilavesi yapılması durumunda ise dendritlerin ve tane boyutunun küçüldüğü ve ayrıca dendirit sayısının arttığı görüldü. Artan bor oranı ile Zn-30Al-(0-2)B alaşımlarının sertliğinin sürekli arttığı, basma mukavemetinin azaldığı, çekme mukavemetlerinin ise %0.06 bor oranına artığı bu orandan sonra ise azaldığı görüldü. Bor katkılarının Zn-30Al alaşımın mekanik özelliklerinde yol açtığı değişimler içyapılarında neden olduğu değişimlere dayandırılarak açıklandı. 

Kaynakça

  • Savaşkan T., Alemdağ Y., Effects of pressure and sliding speed on the friction and wear properties of Al-40Zn-3Cu-2Si alloy: A comparative study with SAE 65 bronze, Mater. Sci. Eng. A, 496, 517-523, 2008.
  • Prasad B.K., Sliding Wear Response of a Zinc-based alloy and its composite and comparison with a gray cast iron: Influence of external lubrication and microstructural features, Mater. Sci. Eng. A, 392, 427-439, 2005.
  • Hekimoğlu A.P., Savaşkan T., Lubricated wear characteristics of Zn-15Al-3Cu-1Si alloy and SAE 660 bronze, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 145-154, 2018.
  • Savaşkan T., Azaklı Z., An Investigation of lubricated friction and wear properties of Zn-40Al-2Cu-2Si alloy in comparison with SAE 65 bearing bronze, Wear, 264, 920-928, 2008.
  • Goodwin F.E. ve Ponikvar A.L., Engineering Properties of Zinc Alloys, International Lead Zinc Research Organization, Third Edition, USA, January 1989.
  • Gervais E., Barnhurst R.J., Loong C.A., An analysis of selected properties of ZA alloys, JOM- J. Min. Met. Mat. S., 37 (11), 43-47, 1985.
  • Özek C., Taşdemir V., Experimental investigation of the effects of blank holder force and die surface angle on the warm deep drawing of AA5754-O alloy, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 171-179, 2017.
  • Küçüktürk G., Experimental investigation of the effects of clearance on product quality in aa5754 sheet material blanking process and estimation by fuzzy logic, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (2), 285-294, 2016.
  • Hekimoğlu A.P., Savaşkan T., Effects of contact pressure and sliding speed on the unlubricated friction and wear properties of Zn-15Al-3Cu-1Si alloy, Tribol. Trans., 59, 1114-1121, 2016.
  • Aybarç U., Kara A., Çubuklusu H.E., Çe Ö.B., Effect of hot isostatic pressing on metallurgical and mechanical properties of A356 alloy, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (4),1327-1335, 2017.
  • Savaşkan T., Hekimoğlu A.P., Relationships between mechanical and tribological properties of Zn-15Al-based ternary and quaternary alloys, Int. J. Mater. Res., 107, 646-652, 2016.
  • Calayag T., Ferres D., High-performance, high-aluminum zinc alloys for low-speed bearings and bushings, 33rd Annual Earthmoving Industry Conference, Paper No 820643, 2241-2251, USA, 1 Şubat 1982.
  • Presnyakov A.A., Gorban Y.A., Chrevyakova V.V., The aluminum-zinc phase diagram, Russian. J. Phys. Chem. A, 35 (6), 632-633, 1961.
  • Kuznetsov G.M., Barsukov A.D., Krivosheeva G.B., Calculation of phase equilibria of the Al-Zn system, Russ. Metall+, 5, 195–198, 1986.
  • Auer H., Mann K.E., Magnetic investigation of zinc-aluminum system, Z. Metallkd., 28 (10), 323-326, 1936.
  • Savaşkan T., Murphy S., Decomposition of Zn-Al alloys on quench-aging, Mater Sci Tech-Lond, 6 (8), 695-703, 1990.
  • Zhu Y., Murphy S., A General rule of decomposition reaction in supersaturated Zn-Al based alloys, Chin. J. Met. Sci.Technol., 2 (23), 105-116, 1986.
  • Savaşkan T., Hekimoğlu A.P., Pürçek G., Effect of copper content on the mechanical and sliding wear properties of monotectoid-based zinc-aluminium-copper alloys, Tribol. Int., 37, 45-50, 2004.
  • Pürçek G., Savaşkan T., Küçükömeroğlu T., Murphy S., Dry sliding friction and wear properties of zinc-based alloys, Wear, 252 (11), 894-901, 2002.
  • Prasad B.K., Effects of partially substituting copper by silicon on the physical, mechanical, and wear properties of a Zn-37.5 %Al based alloy, Mater. Charact., 44(3), 301-308, 2000.
  • Hekimoğlu A.P., Savaşkan T., Structure and mechanical properties of Zn-(5–25) Al alloys, Int. J. Mater. Res., 105 (11), 1084-1089, 2014.
  • Savaşkan T., Bican O., Alemdağ Y., Developing aluminium-zinc-based a new alloy for tribological applications, J. Mater. Sci., 44 (8), 1969-1976, 2009.
  • Savaşkan T., Hekimoğlu A.P., Microstructure and mechanical properties of Zn-15Al-based ternary and quaternary alloys, Mater. Sci. Eng. A, 603, 52-57, 2014.
  • Türk A., Durman M., Kayalı E.S., The effect of manganese on the microstructure and mechanical properties of zinc-aluminium based ZA-8 alloy, J. Mater. Sci., 42 (19), 8298-8305, 2007.
  • Savaskan T., Alemdağ Y., Effect of nickel additions on the mechanical and sliding wear properties of Al-40Zn-3Cu alloy, Wear, 268, 565-570, 2010.
  • Savaşkan T., Pürçek G., Hekimoğlu A.P., Effect of copper content on the mechanical and tribological properties of ZnAl27-based alloys, Tribol Lett., 15, (3), 257-263, 2003.
  • Savaşkan T., Hekimoğlu A.P., Effect of quench-ageing treatment on the microstructure and properties of Zn-15Al-3Cu alloy, Int. J. Mater. Res., 106, 481-487, 2015.
  • Köster W., Moeller K., On the synthesis and constitution of zinc-copper-aluminum alloys. II. The correlation of Cu Al with the ternary crystalline phase, Z. Metallkd., 33, 284-288, 1941.
  • Savaşkan T., Bican O., Effects of silicon content on the microstructural features and mechanical and sliding wear properties of Zn-40Al-2Cu-(0-5)Si alloys, Mater. Sci. Eng. A, 404, 259-269, 2005.
  • Mikuszewski T., Michalik R., Structure and hardness of the ZnAl40Cu(1-2)Ti(1-2) alloys, Solid State Phenomena, 246, 47-50, 2016.
  • Tomaszewska A., Michalik R., Jabłońska M., Corrosion resistance of the ZnAl40Cu(1-2)Ti(1-2) alloys in an "acid rain" environment, Solid State Phenomena, 246, 109-112, 2016.
  • Liu X., Wu Y., Bian X., The nucleation sites of primary si in Al-Si alloys after addition of boron and phosphorus, J. Alloy Compd., 391(1-2), 90-94, 2005.
  • Chen Z., Kang H., Fan G., Li J., Lu Y., Jie J., Zhang Y., Li T., Jian X., Wang T., Grain refinement of hypoeutectic Al-Si alloys with B, Acta Mater., 120, 168-178, 2016.
  • Chen Z., Wang T., Gao L., Fu H., Li T., Grain refinement and tensile properties improvement of aluminum foundry alloys by inoculation with Al–B master alloy, Mater. Sci. Eng. A, 553, 32– 36, 2012.
  • Wang T., Chen Z., Fu H., Gao L., Li T., Grain refinement mechanism of pure aluminum by inoculation with Al–B master alloys, Mater. Sci. Eng. A, 549, 136– 143, 2012.
  • Alipour, M., Azarbarmas, M., Heydari, F., Hoghoughi, M., Alidoost, M., Emamy, M., The effect of Al–8B grain refiner and heat treatment conditions on the microstructure, mechanical properties and dry sliding wear behavior of an Al–12Zn–3Mg–2.5Cu aluminum alloy, Mater. Des., 38, 64–73, 2012.
  • Alipour M., Emamy M., Seyed Ebrahimi S.H., Azarbarmas M., Karamouz M., Rassizadehghani J., Effects of pre-deformation and heat treatment conditions in the SIMA process on properties of an Al–Zn–Mg–Cu alloy modified by Al–8B grain refiner, Mater. Sci. Eng. A, 528, 4482–4490, 2011.
  • Okamoto H., Massalski T.B., Thermodynamically improbable phase diagrams, J. Phase Equilib., 12 (2), 148-168, 1991.
  • Carlson O.N, The Al-B (aluminum-boron) system, Bull. Alloy Phase Diagrams, 11(6), 560-566, 1990.
  • Okamoto H., B-Zn (Boron-Zinc) J. Phase Equil., 12 (4), 502-502, 1991.
  • Savaşkan T., Malzeme Bilimi ve Malzeme Muayenesi, Trabzon, Türkiye, 2015.
  • Avner S.H., Introduction to Physical Metallurgy, McGraw-Hill, New York, A.B.D., 1974.
  • Mohanty P.S., Gruzleski J.E., Grain refinement mechanisms of hypoeutectic Al-Si alloys, Acta Mater., 44 (9) 3749-3760, 1996.
  • Liu Y., Ding C., Li Y., Grain refining mechanism of Al-3B master alloy on hypoeutectic Al-Si alloys, Trans. Nonferrous Met. Soc., 21 (7), 1435-1440, 2011.
  • Chen Z., Kang H., Fan G., Li J., Lu Y., Jie J., Zhang Y., Li T., Jian X., Wang T., Grain refinement of hypoeutectic Al-Si alloys with B, Acta Mater., 120, 168-178, 2016.
  • Maxweel I., Hellawell A., Simple model for grain refinement during solidification, Acta Metall, 23 (2), 229-237, 1975.
  • Spittle J.A., Sadli S, Effect of alloy variables on grain refinement of binary aluminum-alloys with Al-Ti-B, Mater. Sci. Technol., 11(6), 533-537, 1995.
  • Easton M.A., John D.H., Grain refinement of aluminum alloys Part I. The nucleant and solute paradigms-a review of the literature, Metall Mater. Trans. A, 30 (6), 1613-1623, 1999.
  • Easton M.A., John D.H., Grain refinement of aluminum alloys Part II. Confirmation of and a mechanism for the solute paradigm, Metall Mater. Trans. A, 30 (6), 1626-1633, 1999.
  • Easton M.A., John D.H., The effect of alloy content on the grain refinement of aluminium alloys, in: Anjier, J.L., (Ed.), Light Metals, Minerals, Metals & Materials Soc, Warrendale, 927-933, 2001.
  • Wang X., The formation of AlB2 in an Al–B master alloy, J. Alloys Compd., 403 (1), 283-287, 2005.
  • Birol Y., Grain refining aluminium foundry alloys with commercial Al–B master alloys, Mater. Sci. Technol., 30 (3), 277-282, 2014.
  • Cottrel S.A., An Introduction to Metallurgy, Universities Press, 2nd edition, India, 2013.
  • Wang T., Chen Z., Fu H., Xu J., Fu Y., Li T., Grain refining potency of Al–B master alloy on pure aluminum, Scr. Mater., 64 (12), 1121-1124, 2011.
  • Öchsner A., Altenbach, H. (Eds.), Properties and Characterization of Modern Materials, Springer, Magdeburg, Germany, 2017.
  • Spinelli J.E., Garcia A., Development of solidification microstructure and tensile mechanical properties of Sn-0.7Cu and Sn-0.7Cu-2.0Ag solders, Journal of Materials Science Materials in Electronics, 25 (1), 478–486, 2014.
  • Vasconcelos A.J., Silva C.V.A., Moreira A.L.S., Silva M.A.P.S., Rocha O.F.L., Influence of thermal parameters on the dendritic arm spacing and the microhardness of Al-5.5wt.%Sn alloy directionally solidified, Metallurgy and Materials, 67 (2), 173-179, 2014.
  • Liu S., Yang G., Jie W., Microstructure microsegregation and mechanical properties of directional solidified Mg–3.0Nd–1.5Gd alloy, Acta Metall. Sinica, 27 (6), 1134–1143, 2014.
  • Liu Z., Zhou L., Li G., Effects of cooling rate on the microstructure and tensile strength of A356 alloy wheels, 3rd International Conference on Material, Mechanical and Manufacturing Engineering, Guangzhou China, 2103-2109, 2015
  • Wen-ming J., Zi-tian F., De-jun L., Microstructure tensile properties and fractography of A356 alloy under as-cast and T6 obtained with expendable pattern shell casting process, Trans. Nonferrous Met. Soc. China, 22, 7-13, 2012.
  • Shin S.S., Yeom G.Y., Kwak T.Y., Park I.M., Microstructure and mechanical properties of TiB-containing Al-Zn binary alloys, J. Mater. Sci. Technol., 32 (7), 653-659, 2016.
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Paşa Hekimoğlu

Yunus Emre Turan Bu kişi benim

İlhan İlker İsmailoğlu Bu kişi benim

Musab Ensar Akyol Bu kişi benim

Ercan Şen Bu kişi benim

Yayımlanma Tarihi 26 Mart 2019
Gönderilme Tarihi 26 Temmuz 2017
Kabul Tarihi 8 Ocak 18
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Hekimoğlu, A. P., Turan, Y. E., İsmailoğlu, İ. İ., Akyol, M. E., vd. (2019). Bor ile yapılan tane inceltmenin Al-30Zn alaşımının mikroyapı ve mekanik özelliklerine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(1), 523-534. https://doi.org/10.17341/gazimmfd.416512
AMA Hekimoğlu AP, Turan YE, İsmailoğlu İİ, Akyol ME, Şen E. Bor ile yapılan tane inceltmenin Al-30Zn alaşımının mikroyapı ve mekanik özelliklerine etkisi. GUMMFD. Mart 2019;34(1):523-534. doi:10.17341/gazimmfd.416512
Chicago Hekimoğlu, Ali Paşa, Yunus Emre Turan, İlhan İlker İsmailoğlu, Musab Ensar Akyol, ve Ercan Şen. “Bor Ile yapılan Tane Inceltmenin Al-30Zn alaşımının Mikroyapı Ve Mekanik özelliklerine Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, sy. 1 (Mart 2019): 523-34. https://doi.org/10.17341/gazimmfd.416512.
EndNote Hekimoğlu AP, Turan YE, İsmailoğlu İİ, Akyol ME, Şen E (01 Mart 2019) Bor ile yapılan tane inceltmenin Al-30Zn alaşımının mikroyapı ve mekanik özelliklerine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34 1 523–534.
IEEE A. P. Hekimoğlu, Y. E. Turan, İ. İ. İsmailoğlu, M. E. Akyol, ve E. Şen, “Bor ile yapılan tane inceltmenin Al-30Zn alaşımının mikroyapı ve mekanik özelliklerine etkisi”, GUMMFD, c. 34, sy. 1, ss. 523–534, 2019, doi: 10.17341/gazimmfd.416512.
ISNAD Hekimoğlu, Ali Paşa vd. “Bor Ile yapılan Tane Inceltmenin Al-30Zn alaşımının Mikroyapı Ve Mekanik özelliklerine Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/1 (Mart 2019), 523-534. https://doi.org/10.17341/gazimmfd.416512.
JAMA Hekimoğlu AP, Turan YE, İsmailoğlu İİ, Akyol ME, Şen E. Bor ile yapılan tane inceltmenin Al-30Zn alaşımının mikroyapı ve mekanik özelliklerine etkisi. GUMMFD. 2019;34:523–534.
MLA Hekimoğlu, Ali Paşa vd. “Bor Ile yapılan Tane Inceltmenin Al-30Zn alaşımının Mikroyapı Ve Mekanik özelliklerine Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 34, sy. 1, 2019, ss. 523-34, doi:10.17341/gazimmfd.416512.
Vancouver Hekimoğlu AP, Turan YE, İsmailoğlu İİ, Akyol ME, Şen E. Bor ile yapılan tane inceltmenin Al-30Zn alaşımının mikroyapı ve mekanik özelliklerine etkisi. GUMMFD. 2019;34(1):523-34.