Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 1077 - 1088, 25.12.2019
https://doi.org/10.17341/gazimmfd.422448

Öz


Kaynakça

  • Moez A. A., Aly S.S., Elshaer Y.H., Effect of gamma radiation on low density polyethylene (LDPE) films: Optical, dielectric and FTIR studies, Spectrochimica Acta Part A, 93, 203–207, 2012.
  • Nowak B., Pajak J., Drozd-Brakowicz M., Rymarz G., Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions, Int. Biodeterior. Biodegrad., 65 (6), 757–767, 2011.
  • Nand A. V., Ray S., Travas-Sejdic J., Kilmartin P. A., Characterization of antioxidant low density polyethylene/polyaniline blends prepared via extrusion, Materials Chemistry and Physics, 135 (2–3), 903–911, 2012.
  • Devilliers C., Fayolle B., Laiarinandrasana L., Oberti S., Gaudichet-Maurin E., Kinetics of chlorine-induced polyethylene degradation in water pipes, Polym. Degrad. Stab., 96 (7), 1361–1368, 2011.
  • Causin V., Marega C., Carresi P., Schiavone S., Marigo A., A quantitative differentiation method for plastic bags by infrared spectroscopy, thickness measurement and differential scanning calorimetry for tracing the source of illegal drugs, Forensic. Sci. Int. 164 (2-3), 148–154, 2006.
  • Shaber E. R., Vertical interpositional augmentation genioplasty with porous polyethylene, Int. J. Oral Maxillofac. Surg. 16 (6), 678–681, 1987.
  • Lingaraj K., Morris H., Barlett J., Polyethylene thickness in unicompartmental knee arthroplasty, 18 (3), 165–167, 2011.
  • Schwope A. D., Till D. E., Ehntholt D.J., Sidman K.R., Whelan R.H., Schwartz P.S., Reid R.C., Migration of BHT and Irganox 1010 from low-density polyethylene (LDPE) to foods and food-simulating liquids, Food Chem. Toxical. 25 (4), 317–326, 1987.
  • Murakami Y., Nemoto M., Okuzumi S., Masuda S., Nagao M., DC conduction and electrical breakdown of MgO/LDPE nanocomposite, IEEE Trans. Dielectr. Electr. Insul., 15, 33–39, 2008.
  • Huang R., Xu X., Lee S., Zhang Y., Kim B.-J., Wu Q., High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance, Materials, 6, 4122–4138, 2013.
  • Hao W., Shuang J. C., and Jun Z., Surface treatment of LLDPE and LDPE blends by nitric acid, sulfuric acid & chromic acid etching, Colloid Polymer Science, 287, 541–548, 2009.
  • Gaska K., Xu X., Gubanski S., Kádár R., Electrical, mechanical, and thermal properties of LDPE graphene nanoplatelets composites produced by means of melt extrusion process, Polymers, 9 (1), 11 (1–12), 2017.
  • Sharma J., Chand N., Bapat M. N., Effect of cenosphere on dielectric properties of low density polyethylene, Results Phys., 2, 26–33, 2012.
  • Bhadra, S., Khastgir, D., Singha, N. K., Lee, J. H., Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 34, 783–810, 2009.
  • Boeva Zh. A., Sergeyev V. G., Polyaniline: Synthesis, Properties, and Application, Polymer Science Series C, 56 (1), 144–153, 2014.
  • Taipalus R., Harmia T., Friedrich K., Short Fibre Reinforced PP/PANI-Complex Blends and their Mechanical and Electrical Properties, Applied Composite Materials, 6, 167–175, 1999.
  • Taipalus R., Harmia T., Friedrich K., Influence of PANI-Complex on the Mechanical and Electrical Properties of Carbon Fiber Reinforced PolypropyIene Composites. Polymer Composites, 21, 396–416, 2000.
  • Schackletta, L.W., Han, C. C., Luly, M. H., 1993. Polyaniline Blends in Thermoplastics. Synthetic Metals, 55–57, 3532–3537.
  • Abd Razak S. I., Abdul Rahman W. A. W., Hashim S., Yahya M.Y., 2013. Polyaniline and their Conductive Polymer Blends: A Short Review. Malaysian Journal of Fundamental and Applied Sciences, 9, 74–80.
  • Eyecioglu O., Kilic M., Karabul Y., Alkan U., Icelli O., Artificial Neural Networks Study on Prediction of Dielectric Permittivity of Basalt/PANI Composites, International Journal of Engineering Technologies, 2 (2), 42–48, 2016.
  • Habibi-Yangjeh A., Prediction dielectric constant of different ternary liquid mixtures at various temperatures and compositions using artificial neural networks, Physics and Chemistry of Liquids, 45 (4), 471–478, 2007.
  • Selva P., Cherrier O., Budinger V., Lachaud F., Morlier J., Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks, Engineering Structures, 56, 794–804, 2013.
  • Schweitzer R. C., Morris J. B., The development of a quantitative structure property relationship (QSPR) for the prediction of dielectric constants using neural networks. Analytica Chimica Acta, 384, 285–303, 1999.
  • Habibi-Yangjeh A., Prediction dielectric constant of different ternary liquid mixtures at various temperatures and compositions using artificial neural networks, Physics and Chemistry of Liquids, 45 (4), 471-478, 2007.
  • Guo D., Wang Y, Nan C, Li L., Xia J., Application of artificial neural network technique to the formulation design of dielectric ceramics, Sensors and Actuators A, 102, 93–98, 2002.
  • Yu X., Yi B., Liu F., Wang X., Prediction of the dielectric dissipation factor tand of polymers with an ANN model based on the DFT calculation, Reactive & Functional Polymers, 68, 1557–1562, 2008.
  • İnal M., Aras F., Yalıtkan Malzemelerin Dielektrik Özelliklerinin Yapay Sinir Ağlarıyla Belirlenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 20 (4), 455–462, 2005.
  • D. F. Specht, “A general regression neural network,” IEEE Trans. Neu. Net., vol. 2, pp. 568–576, 1991.
  • Nagasawa S., Fujimori A., Masuko T., Iguchi M., Crystallization of polypropylene containing nucleators. Polymer, 46 (14), 5241–5250, 2005.
  • Ju S., Chen M., Zhang H., Zhang Z., Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles, eXPRESS Polymer Letters, 8 (9), 682–691, 2014.

DYPE/PANI kompozit filmlerin sıcaklığa ve PANI katkı konsantrasyonuna bağlı olarak dielektrik parametrelerinin GRSA ile tahmini

Yıl 2020, , 1077 - 1088, 25.12.2019
https://doi.org/10.17341/gazimmfd.422448

Öz

Bu çalışmada, düşük
yoğunluklu polietilenin (DYPE) kompleks dielektrik fonksiyonunun gerçek ve sanal
bileşenlerinin (
e ve e’’
) hem polianilin (PANI) katkısına hem de sıcaklığa bağlı değişimlerinin, genelleştirilmiş
regrasyon sinir ağları (GRSA) metoduyla yüksek doğrulukla tahmin edilebileceği gösterilmiştir.
Bunun için öncelikle, saf DYPE ve kütlece % 0,7, %1 ve %3 PANI katkılandırılmış
DYPE/PANI kompozitler fimler hazırlanmış ve ilgili numunelerin 20 °C, 50 °C ve
80 °C’de
e ve e’’ bileşenlerinin frekansa
bağlı değişimleri dielektrik spektroskopisi yöntemiyle deneysel olarak
belirlenmiştir. Ardından, dielektrik parametrelerin tahmin değerlerine karşılık
gerçek değerlerine göre çizilen grafikler yardımıyla, GRSA modelinin ilgili
parametrelerin tayinindeki başarı performansı R
e=0,9998 ve Re’’ =0,9365
olarak tespit edilmiştir. Bu noktadan hareketle, GRSA modeli önce mevcut
numunelerin 35 °C, 65 °C ve 95 °C sıcaklıklarda frekansa bağlı olarak
e
ve
e’’  bileşenlerinin
değişimini tahmin etmekte kullanılmıştır. Ardından, deneysel olarak hiç
üretilmemiş iki faklı kompozit için (%1,5 ve %6 PANI katkılı DYPE) 20 °C, 35 °C,
50 °C, 65 °C, 80 °C ve 95 °C’de
e ve e’’
  bileşenlerinin
frekansa bağlı değişimleri GRSA metodu ile önerilmiştir. Böylelikle, hiç
deneysel olarak üretilmemiş bu numunelerin dielektrik parametreleri sıcaklığa
ve frekansa bağlı olarak belirlenebilmiştir. 

Kaynakça

  • Moez A. A., Aly S.S., Elshaer Y.H., Effect of gamma radiation on low density polyethylene (LDPE) films: Optical, dielectric and FTIR studies, Spectrochimica Acta Part A, 93, 203–207, 2012.
  • Nowak B., Pajak J., Drozd-Brakowicz M., Rymarz G., Microorganisms participating in the biodegradation of modified polyethylene films in different soils under laboratory conditions, Int. Biodeterior. Biodegrad., 65 (6), 757–767, 2011.
  • Nand A. V., Ray S., Travas-Sejdic J., Kilmartin P. A., Characterization of antioxidant low density polyethylene/polyaniline blends prepared via extrusion, Materials Chemistry and Physics, 135 (2–3), 903–911, 2012.
  • Devilliers C., Fayolle B., Laiarinandrasana L., Oberti S., Gaudichet-Maurin E., Kinetics of chlorine-induced polyethylene degradation in water pipes, Polym. Degrad. Stab., 96 (7), 1361–1368, 2011.
  • Causin V., Marega C., Carresi P., Schiavone S., Marigo A., A quantitative differentiation method for plastic bags by infrared spectroscopy, thickness measurement and differential scanning calorimetry for tracing the source of illegal drugs, Forensic. Sci. Int. 164 (2-3), 148–154, 2006.
  • Shaber E. R., Vertical interpositional augmentation genioplasty with porous polyethylene, Int. J. Oral Maxillofac. Surg. 16 (6), 678–681, 1987.
  • Lingaraj K., Morris H., Barlett J., Polyethylene thickness in unicompartmental knee arthroplasty, 18 (3), 165–167, 2011.
  • Schwope A. D., Till D. E., Ehntholt D.J., Sidman K.R., Whelan R.H., Schwartz P.S., Reid R.C., Migration of BHT and Irganox 1010 from low-density polyethylene (LDPE) to foods and food-simulating liquids, Food Chem. Toxical. 25 (4), 317–326, 1987.
  • Murakami Y., Nemoto M., Okuzumi S., Masuda S., Nagao M., DC conduction and electrical breakdown of MgO/LDPE nanocomposite, IEEE Trans. Dielectr. Electr. Insul., 15, 33–39, 2008.
  • Huang R., Xu X., Lee S., Zhang Y., Kim B.-J., Wu Q., High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance, Materials, 6, 4122–4138, 2013.
  • Hao W., Shuang J. C., and Jun Z., Surface treatment of LLDPE and LDPE blends by nitric acid, sulfuric acid & chromic acid etching, Colloid Polymer Science, 287, 541–548, 2009.
  • Gaska K., Xu X., Gubanski S., Kádár R., Electrical, mechanical, and thermal properties of LDPE graphene nanoplatelets composites produced by means of melt extrusion process, Polymers, 9 (1), 11 (1–12), 2017.
  • Sharma J., Chand N., Bapat M. N., Effect of cenosphere on dielectric properties of low density polyethylene, Results Phys., 2, 26–33, 2012.
  • Bhadra, S., Khastgir, D., Singha, N. K., Lee, J. H., Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 34, 783–810, 2009.
  • Boeva Zh. A., Sergeyev V. G., Polyaniline: Synthesis, Properties, and Application, Polymer Science Series C, 56 (1), 144–153, 2014.
  • Taipalus R., Harmia T., Friedrich K., Short Fibre Reinforced PP/PANI-Complex Blends and their Mechanical and Electrical Properties, Applied Composite Materials, 6, 167–175, 1999.
  • Taipalus R., Harmia T., Friedrich K., Influence of PANI-Complex on the Mechanical and Electrical Properties of Carbon Fiber Reinforced PolypropyIene Composites. Polymer Composites, 21, 396–416, 2000.
  • Schackletta, L.W., Han, C. C., Luly, M. H., 1993. Polyaniline Blends in Thermoplastics. Synthetic Metals, 55–57, 3532–3537.
  • Abd Razak S. I., Abdul Rahman W. A. W., Hashim S., Yahya M.Y., 2013. Polyaniline and their Conductive Polymer Blends: A Short Review. Malaysian Journal of Fundamental and Applied Sciences, 9, 74–80.
  • Eyecioglu O., Kilic M., Karabul Y., Alkan U., Icelli O., Artificial Neural Networks Study on Prediction of Dielectric Permittivity of Basalt/PANI Composites, International Journal of Engineering Technologies, 2 (2), 42–48, 2016.
  • Habibi-Yangjeh A., Prediction dielectric constant of different ternary liquid mixtures at various temperatures and compositions using artificial neural networks, Physics and Chemistry of Liquids, 45 (4), 471–478, 2007.
  • Selva P., Cherrier O., Budinger V., Lachaud F., Morlier J., Smart monitoring of aeronautical composites plates based on electromechanical impedance measurements and artificial neural networks, Engineering Structures, 56, 794–804, 2013.
  • Schweitzer R. C., Morris J. B., The development of a quantitative structure property relationship (QSPR) for the prediction of dielectric constants using neural networks. Analytica Chimica Acta, 384, 285–303, 1999.
  • Habibi-Yangjeh A., Prediction dielectric constant of different ternary liquid mixtures at various temperatures and compositions using artificial neural networks, Physics and Chemistry of Liquids, 45 (4), 471-478, 2007.
  • Guo D., Wang Y, Nan C, Li L., Xia J., Application of artificial neural network technique to the formulation design of dielectric ceramics, Sensors and Actuators A, 102, 93–98, 2002.
  • Yu X., Yi B., Liu F., Wang X., Prediction of the dielectric dissipation factor tand of polymers with an ANN model based on the DFT calculation, Reactive & Functional Polymers, 68, 1557–1562, 2008.
  • İnal M., Aras F., Yalıtkan Malzemelerin Dielektrik Özelliklerinin Yapay Sinir Ağlarıyla Belirlenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 20 (4), 455–462, 2005.
  • D. F. Specht, “A general regression neural network,” IEEE Trans. Neu. Net., vol. 2, pp. 568–576, 1991.
  • Nagasawa S., Fujimori A., Masuko T., Iguchi M., Crystallization of polypropylene containing nucleators. Polymer, 46 (14), 5241–5250, 2005.
  • Ju S., Chen M., Zhang H., Zhang Z., Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles, eXPRESS Polymer Letters, 8 (9), 682–691, 2014.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık, Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Kılıç 0000-0003-1882-0405

Önder Eyecioğlu 0000-0001-7770-2826

Zeynep Güven Özdemir 0000-0001-5085-5814

Ümit Alkan Bu kişi benim 0000-0002-0044-5494

Yayımlanma Tarihi 25 Aralık 2019
Gönderilme Tarihi 9 Mayıs 2018
Kabul Tarihi 3 Aralık 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Kılıç, M., Eyecioğlu, Ö., Güven Özdemir, Z., Alkan, Ü. (2019). DYPE/PANI kompozit filmlerin sıcaklığa ve PANI katkı konsantrasyonuna bağlı olarak dielektrik parametrelerinin GRSA ile tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(2), 1077-1088. https://doi.org/10.17341/gazimmfd.422448
AMA Kılıç M, Eyecioğlu Ö, Güven Özdemir Z, Alkan Ü. DYPE/PANI kompozit filmlerin sıcaklığa ve PANI katkı konsantrasyonuna bağlı olarak dielektrik parametrelerinin GRSA ile tahmini. GUMMFD. Aralık 2019;35(2):1077-1088. doi:10.17341/gazimmfd.422448
Chicago Kılıç, Mehmet, Önder Eyecioğlu, Zeynep Güven Özdemir, ve Ümit Alkan. “DYPE/PANI Kompozit Filmlerin sıcaklığa Ve PANI Katkı Konsantrasyonuna bağlı Olarak Dielektrik Parametrelerinin GRSA Ile Tahmini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 2 (Aralık 2019): 1077-88. https://doi.org/10.17341/gazimmfd.422448.
EndNote Kılıç M, Eyecioğlu Ö, Güven Özdemir Z, Alkan Ü (01 Aralık 2019) DYPE/PANI kompozit filmlerin sıcaklığa ve PANI katkı konsantrasyonuna bağlı olarak dielektrik parametrelerinin GRSA ile tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 2 1077–1088.
IEEE M. Kılıç, Ö. Eyecioğlu, Z. Güven Özdemir, ve Ü. Alkan, “DYPE/PANI kompozit filmlerin sıcaklığa ve PANI katkı konsantrasyonuna bağlı olarak dielektrik parametrelerinin GRSA ile tahmini”, GUMMFD, c. 35, sy. 2, ss. 1077–1088, 2019, doi: 10.17341/gazimmfd.422448.
ISNAD Kılıç, Mehmet vd. “DYPE/PANI Kompozit Filmlerin sıcaklığa Ve PANI Katkı Konsantrasyonuna bağlı Olarak Dielektrik Parametrelerinin GRSA Ile Tahmini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/2 (Aralık 2019), 1077-1088. https://doi.org/10.17341/gazimmfd.422448.
JAMA Kılıç M, Eyecioğlu Ö, Güven Özdemir Z, Alkan Ü. DYPE/PANI kompozit filmlerin sıcaklığa ve PANI katkı konsantrasyonuna bağlı olarak dielektrik parametrelerinin GRSA ile tahmini. GUMMFD. 2019;35:1077–1088.
MLA Kılıç, Mehmet vd. “DYPE/PANI Kompozit Filmlerin sıcaklığa Ve PANI Katkı Konsantrasyonuna bağlı Olarak Dielektrik Parametrelerinin GRSA Ile Tahmini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 2, 2019, ss. 1077-88, doi:10.17341/gazimmfd.422448.
Vancouver Kılıç M, Eyecioğlu Ö, Güven Özdemir Z, Alkan Ü. DYPE/PANI kompozit filmlerin sıcaklığa ve PANI katkı konsantrasyonuna bağlı olarak dielektrik parametrelerinin GRSA ile tahmini. GUMMFD. 2019;35(2):1077-88.