Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 225 - 240, 25.10.2019
https://doi.org/10.17341/gazimmfd.454386

Öz

Kaynakça

  • Lucca, D.A., Brinksmeier, E., Goch, G., Progress in assessing surface and subsurface integrity, Annals of the ClRP, 47 (2), 669-693, 1998.
  • Field, M., Kahles, J.F., The surface integrity of machined and ground high strength steels, DMIC Report, 210, 54-77, 1964.
  • Saini, S., Ahuja, I.S, Sharma V.S., The effect of cutting parameters on surface integrity in hard turning, Applied Mechanics and Materials, 110(116), 751-757, 2012.
  • Field, M., Kahles, J. F., Review of Surface integrity of machined components, Annals of the CIRP, 20(2), 153-163, 1971.
  • Alexander, D., Bernardo, L., David, J., Escobar, Maria, D., Effect of the variation of cutting parameters in surface integrity in turning processing of an AISI 304 austenitic stainless steel, Technical contribution to the First International Brazilian Conference on Tribology, Copacabana, Brazil, 434-446, 24-25 Novenber, 2010.
  • Javidi, A., Rieger U., Eichlseder W., The effect of machining on the surface integrity and fatigue life (Technical note), International Journal of Fatigue, 30, 2050-2055, 2008.
  • Smith, S., Melkote, S.N., Lara-Curzio, E., Watkins T.R., Allard, L., Riester, L., Effect of surface integrity of hard turned AISI 52100 steel on fatigue performance, Materials Science and Engineering, 459, 337-346, 2007.
  • Shi, J., Liu Richard, C., Two-step cutting for improving surface integrity and rolling contact fatigue performance of hard machined surfaces, Materials and Manufacturing Processes, 25, 495-502, 2010.
  • Choi, Y., Influence of feed rate on surface integrity and fatigue performance of machined surfaces”, International Journal of Fatigue, 78, 46–52, 2015.
  • Bordin, A., Bruschi, S., Ghiotti, A., The effect of cutting speed and feed rate on the surface integrity in dry turning of CoCrMo alloy, 2nd CIRP Conference on Surface Integrity (CSI), Procedia CIRP, 13, 219-224, 2014.
  • Chaudhari R.G., Hashimoto F., Process controls for surface integrity generated by hard turning” 3rd CIRP Conference on Surface Integrity (CIRP CSI), Procedia CIRP, 45, 15-18, 2016.
  • Abboud E., Attia H. Shi, B., Damir, A., Thomson, V., Mebrahtu Y., Residual stresses and surface integrity of Ti-alloys during finish turning –guidelines for compressive residual stresses, 3rd CIRP Conference on Surface Integrity (CIRP CSI), Procedia CIRP, 45, 55-58, 2016.
  • Sharman, A.R.C. Hughes, J.I., Ridgway, K., The effect of tool nose radius on surface integrity and residual stresses when turning Inconel 718, Journal of Materials Processing Technology, 216, 123-132, 2015.
  • Marques, A., Guimarães, C., Batista da Silva, R., Fonseca, M. da P. C. Sales, W. F., Machado, Á. R., Surface Integrity Analysis of Inconel 718 after Turning with Different Solid Lubricants Dispersed in Neat Oil Delivered by MQL, Procedia Manufacturing, 5, 609–620, 2016.
  • Iturbe, A., Hormaetxe, E. Garay, A., Arrazola, P.J., Surface integrity analysis when machining Inconel 718 with conventional and cryogenic cooling, 3rd CIRP Conference on Surface Integrity (CIRP CSI), Procedia CIRP, 45, 67-70, 2016.
  • Devillez, A., Coz, G.L., Dominiak, S., Dudzinski, D., Dry machining of Inconel 718, workpiece surface integrity, Journal of Materials Processing Technology, 211, 1590-1598, 2011.
  • Yao, C., Lin, J., Wu, D., Ren, J., Surface integrity and fatigue behavior when turning ɣ-TiAl alloy with optimized PVD-coated carbide inserts, Chinese Journal of Aeronautics, 31(4), 826-836, 2018.
  • Liu, G., Huang, C., Zou B., Wang, X., Liu, Z., Surface integrity and fatigue performance of 17-4PH stainless steel after cutting operations, Surface & Coatings Technology, 307, 182-189, 2016.
  • Bordina, A., Bruschia, S., Ghiottia, A., The effect of cutting speed and feed rate on the surface integrity in dry turning of CoCrMo alloy, 2nd CIRP Conference on Surface Integrity (CSI), Procedia CIRP, 13, 219-224, 2014.
  • Pretorius, C.J., Soo, S. L., Aspinwall, D. K., Harden, P. M. M’Saoubi, Rachid, Mantle, A. L., Tool wear behaviour and workpiece surface integrity when turning Ti– 6Al–2Sn–4Zr–6Mo with polycrystalline diamond tooling, CIRP Annals - Manufacturing Technology, 64, 109-112, 2015.
  • Gurbuz, H., AISI 316l Çeliğin İşlenmesinde Kesici Takım Geometrisi ve Kaplama Tiplerinin Yüzey Bütünlüğü Üzerindeki Etkilerinin Araştırılması, Doktora Tezi, Gazi Üniversitesi, Türkiye, 1-179, 2012.
  • Gürbüz H., Şeker, U., Kafkas F., Investigation of effects of cutting insert rake face forms on surface integrity, The International Journal of Advanced Manufacturing Technology, 90, (9-12), 3507-3522, 2017.
  • ISO 3685, Tool-life testing with single-point turning tools, 1-12, 1993.
  • Sandvik Coromant, Sipariş Katoloğu- Sandvik Coromanttan Kesici Takımlar 2009, C-2900:8 AB Sandvik Coromant, İsveç, A123, 2010.
  • Sandvik Coromant, Teknik Kılavuz, C-2900:7 AB Sandvik Coromant, İsveç A101, 103-105, 2010.
  • Sandvik Coromant El Kitabı, Talaşlı İmalat Teknolojisi Teknik Kılavuzu, C-2900:3 AB Sandvik Coromant, İsveç, A73, 2005.
  • Outeiro, J.C., Dias A.M., Jawahir I.S., On the effects of residual stresses induced by coated and uncoated cutting tools with finite edge radii in turning operations, Annals of the CIRP, 55(1), 111-116, 2006.
  • Outeiro, J.C., Dias, A.M., Lebrun, J.L., Astakhov, V.P., Machining residual stresses in AISI 316L steel and their correlation with the cutting parameters, Machining Science and Technology, 6(2), 251-270, 2002.
  • M'Saoubi, R., Outeiro, J.C., Changeux, B., Lebrun, J.L., Moraäo Dias, A. “Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels, Journal of Materials Processing Technology, 96, 225-233, 1999.
  • Outeiro, J.C., Pina, J.C., M’Saoubi, R., Pusavec, F., Jawahir, I.S., Analysis of residual stresses induced by dry turning of difficult-to-machine materials, CIRP Annals - Manufacturing Technology, 57, 77-80, 2008.
  • Cullity, B.D., Elements of X-ray diffraction 2nd ed., Addison-Wesley Series in Metallurgy and Materials, Canada, 86-87, 460-461, 1978.
  • Chen, W., Cutting forces and surface finish when machining medium hardness steel using CBN tools, International Journal of Machine Tools & Manufacture, 40, 455-466, 2000.
  • Trent, E.M., Metal cutting, Butterworths Press, London, 1-171, 1989.
  • Şeker, U., Takım tasarımı ders notları, Gazi Üniversitesi Teknik Eğitim Fakültesi, Ankara, 5-11, 33-44, 47-72, 1997.
  • Zhao, J., Ai, X., Li, Z., Finite element analysis of cutting forces in high speed machining, Materials Science Forum, 532-533, 753-756, 2006.
  • Çiftçi, İ., Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools, Tribology International, 39, 565-569, 2006.
  • Aslantaş, K., Ucun, İ., Ucun, İ., Ortagonal kesme işleminde kesici takım kaplama malzemesinin talaş kayma açısı üzerindeki etkisinin modellenmesi, 2. Ulusal Tasarım imalat ve Analiz Kongresi, Balıkesir, 10-19, 2010.
  • Shih, A.J., Finite element analysis of the rake angle effects in orthogonal cutting, International Journal of Mechanical Sciences, 38, (1), 1-17, 1996.
  • Moufki, A., Molinari, A., Dudzinski, D., Modelling of orthogonal cutting with a temperature dependent friction law, Journal of Mechanical Physics of Solids, 46, 2103-2138, 1998.
  • Saglam, H., Unsacar, F., Yaldiz, S., Investigation of the effect of rake angle and approaching angle on main cutting force and tool tip temperature, International Journal of Machine Tools & Manufacture, 46, 132-141, 2006.
  • Günay, M., Şeker, U., Kesici takim talaş açısının ilerleme kuvveti üzerindeki etkisinin araştırılması”, Politeknik Dergisi, 8(4), 323-328, 2005.
  • Günay, M., Korkut, İ., Aslan, E., Şeker, U., Experimental investigation of the effect of cutting tool rake angle on main cutting force, Journal of Materials Processing Technology, 166, 44-49, 2005.
  • Günay, M., Aslan, E., Korkut, İ., Şeker, U., Investigation of the effect of rake angle on main cutting force, International Journal of Machine Tools & Manufacture, 44, 953-959, 2004.
  • Boothroyd, G., Fundamentals of metal machining and machine tools, Second edition, McGraw-Hill, New York, 166-172, 1989.
  • Shaw, M. C., Metal cutting principles, Oxford University Press, Oxford, 1-9, 1989.
  • De Garmo, E.P., Black, J.T., Kohser, R.A., Materials and processes in manufacturing, Prentice-Hall Inc., New Jersey, 214-652, 1997.
  • Gökkaya, H., Sur, G., Dilipak, H. “PVD ve CVD Kaplamalı sementit karbür kesici takımların işleme parametrelerine bağlı olarak yüzey pürüzlülüğüne etkisinin deneysel olarak incelenmesi”, Teknoloji Dergisi, 7(3), 473-478, 2004.
  • Munoz–Escalona, P., Cassier, Z., Influence of the critical cutting speed on the surface finish of turned steel, Wear, 218, 103-109, 1998.
  • Thamizhmanii, S., Kamarudin, K.E., Rahim, A., Saparudin, A., Hassan, S., Tool wear and surface roughness in turning AISI 8620 using coated ceramic tool, Proceedings of the World Congress on Engineering, Vol II WCE, London, 1157-1161, 2007.
  • Hagiwara, M., Chen, S., Jawahir, I.S., Contour finish turning operations with coated grooved tools: Optimization of Machining Performance, Journal of Materials Processing Technology, 209, 332-342, 2009.
  • Günay, M. Investigation of the interaction between the surface quality and rake angle in machining of AISI 1040 steel, Journal of Engineering and Natural Sciences, 26, 105-111, 2007.
  • Outeiro, J.C., Umbrello, D., M’Saoubi, R., Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L Steel, International Journal of Machine Tools & Manufacture, 46(14), 1786-1794, 2006.
  • Maranhão, C., Davim P.J., Finite element modelling of machining of AISI 316 steel: Numerical simulation and experimental validation, Simulation Modelling Practice and Theory, 18, 139-156, 2010.
  • Jacobus, J.K., Modelling of the in-plane biaxial residual stress from machining, PhD Thesis, University of Illinois, Urbana-Chambaign, A.B.D., 1-23, 1999.
  • Kishawy, H.E.A., Chip formation and surface integrity in high speed machining of hardened steel, Doctor of Philosophy, Mc Master Universty, Canada, 87-89, 1998.
  • Liu, C.R., Barash, M.M., Variables governing patterns of mechanical residual stress in a machined surface, Journal of Engineering for Industry, Transactions ASME, 104(3), 257-264, 1982.
  • Sandvik Coromant, Modern metal cutting–A practical handbook, English Edition, Sandvik Coromant, Sweden, I-III, 1994.
  • Matsumoto, Y., Hashimoto, F., Lahoti, G., Surface integrity generated by precision hard turning, Annals of the CIRP, 48(1), 59-62, 1999.
  • Sharman, A.R.C., Hughes, J.I., Ridgway, K., An analysis of the residual stresses generated in Inconel 718 when turning, Journal of Materials Processing Technology, 173, 359-367, 2006.
  • Dahlman, P., Gunnberg, F., Jacobson, M., The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning, Journal of Materials Processing Technology, 147, 181-184, 2004.
  • Sasahara, H., Obikawa, T., Shirakashi, T., Prediction model of surface residual stress within a machined surface by combining two orthogonal plane models, International Journal of Machine Tools & Manufacture, 44, 815-822, 2004.
  • Gunnberg, F., Escursell M., Jacobson, M., The influence of cutting parameters on residual stresses and surface topography during hard turning of 18MnCr5 case carburised steel, Journal of Materials Processing Technology, 174, 82-90, 2006.
  • Bosheh, S.S., Mativenga, P.T., White layer formation in hard turning of H13 tool steel at high cutting speeds using CBN tooling, International Journal of Machine Tools and Manufacture, 46, 225-233, 2006.
  • Jawahir, I.S., Brinksmeier, E., Saoubi, R.M., Aspinwall, D.K., Outeiro, J.C., Meyer, D., Umbrello, D., Jayala, A.D., Surface integrity in material removal processes: Recent advances, CIRP Annals - Manufacturing Technology, 60, 603-626, 2011.
  • Barbacki, A., Kawalec, M., Hamrol, A., Turning and grinding as a source of microstructural changes in the surface layer of hardened steel, Journal of Materials Processing Technology, 133, 21-25, 2003.
  • Ulutan, D., Ozel, T., Machining induced surface integrity in titanium and nickel alloys: A review, International Journal of Machine Tools and Manufacture, 51, 250-280, 2011.
  • Ezugwu, E.O., Wang, Z.M., Okeke, C.I., Tool life and surface integrity when machining Inconel 718 with PVD and CVD coated tools, Tribology Transactions, 42(2), 353-360, 1999.
  • Yang, X., Liu, C.R., Machining titanium and its alloys, Machining Science and Technology, 3(1), 107-139, 1999.
  • Kishawy, H.A., Elbestawi, M.A., Tool wear and surface integrity during high-speed turning of hardened steel with polycrystalline cubic boron nitride tools, Journal of Engineering Manufacture, 215, 755-767, 2001.
  • Che-Haron, C.H. “Tool life and surface integrity in turning titanium alloy”, Journal of Materials Processing Technology, 118, 231-237, 2001.
  • Che-Haron, C.H., Jawaid, A., The effect of machining on surface integrity of titanium alloy Ti–6%Al–4%V”, Journal of Materials Processing Technology, 166, 188-192, 2005.
  • Sharman, A.R.C., Hughes, J.I., Ridgway, K., Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy, Machining Science And Technology, 8(3), 399-414, 2004.
  • Pawade, R.S., Joshi, S.S., Brahmankar P.K., Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718, International Journal of Machine Tools and Manufacture, 48, 15-28, 2008.
  • Coelho, R.T., Silva, L.R., Braghini Jr, A., Bezerra, A.A., Some effects of cutting edge preparation and geometric modifications when turning Inconel 718 at high cutting speeds, Journal of Materials Processing Technology, 148(1), 147-153, 2004.
  • Umbrello, D., Filice, L., Improving surface integrity in orthogonal machining of hardened AISI 52100 steel by modeling white and dark layers formation, CIRP Annals - Manufacturing Technology, 58, 73-76, 2009.

AISI 316L çeliğinin tornalanmasında kesici takım formlarının yüzey bütünlüğü üzerine etkisi

Yıl 2020, , 225 - 240, 25.10.2019
https://doi.org/10.17341/gazimmfd.454386

Öz

Bu çalışmada, AISI 316L çeliğin
işlenmesinde kesici takım formlarının ve kesme parametrelerinin yüzey bütünlüğü
üzerine etkileri deneysel olarak araştırılmıştır. Kesme deneylerinde, PVD kaplı
MM ve MF formlu sementit karbür kesici takımlar ve PSBNR 2525M12 formunda takım
tutucu kullanılmıştır. Kesme parametreleri dört farklı kesme hızı, üç farklı
ilerleme ve iki farklı kesme derinliği şeklinde belirlenmiştir. Yüzey
bütünlüğü; yüzey pürüzlülüğü, kalıntı gerilmeler, mikrosertlik ve mikroyapı
analizleri açısından değerlendirilmiştir. Bütün kesme şartlarında,  kesme derinliği ve ilerleme değeri arttığında
yüzey bütünlüğünün kötüleştiği, buna karşın kesme hızındaki artışla birlikte
yüzey bütünlüğünün iyileştiği görülmüştür. Kesici takım formları
karşılaştırıldığında en iyi yüzey bütünlüğü sonuçları MF formlu kesici
takımlarla, en kötü yüzey bütünlüğü sonuçları ise MM formlu kesici takımlarla
elde edilmiştir. Talaş açısı artıkça yüzey bütünlüğü iyileşmiştir. En kötü yüzey
bütünlüğü kesme hızı 200 m/dak, ilerleme 0,1 mm/dev ve kesme derinliği 1,25 mm
olduğunda, en iyi yüzey bütünlüğü ise kesme hızı 125 m/dak, ilerleme 0,3 mm/dev
ve kesme derinliği 2,5 mm olduğunda elde edilmiştir.

Kaynakça

  • Lucca, D.A., Brinksmeier, E., Goch, G., Progress in assessing surface and subsurface integrity, Annals of the ClRP, 47 (2), 669-693, 1998.
  • Field, M., Kahles, J.F., The surface integrity of machined and ground high strength steels, DMIC Report, 210, 54-77, 1964.
  • Saini, S., Ahuja, I.S, Sharma V.S., The effect of cutting parameters on surface integrity in hard turning, Applied Mechanics and Materials, 110(116), 751-757, 2012.
  • Field, M., Kahles, J. F., Review of Surface integrity of machined components, Annals of the CIRP, 20(2), 153-163, 1971.
  • Alexander, D., Bernardo, L., David, J., Escobar, Maria, D., Effect of the variation of cutting parameters in surface integrity in turning processing of an AISI 304 austenitic stainless steel, Technical contribution to the First International Brazilian Conference on Tribology, Copacabana, Brazil, 434-446, 24-25 Novenber, 2010.
  • Javidi, A., Rieger U., Eichlseder W., The effect of machining on the surface integrity and fatigue life (Technical note), International Journal of Fatigue, 30, 2050-2055, 2008.
  • Smith, S., Melkote, S.N., Lara-Curzio, E., Watkins T.R., Allard, L., Riester, L., Effect of surface integrity of hard turned AISI 52100 steel on fatigue performance, Materials Science and Engineering, 459, 337-346, 2007.
  • Shi, J., Liu Richard, C., Two-step cutting for improving surface integrity and rolling contact fatigue performance of hard machined surfaces, Materials and Manufacturing Processes, 25, 495-502, 2010.
  • Choi, Y., Influence of feed rate on surface integrity and fatigue performance of machined surfaces”, International Journal of Fatigue, 78, 46–52, 2015.
  • Bordin, A., Bruschi, S., Ghiotti, A., The effect of cutting speed and feed rate on the surface integrity in dry turning of CoCrMo alloy, 2nd CIRP Conference on Surface Integrity (CSI), Procedia CIRP, 13, 219-224, 2014.
  • Chaudhari R.G., Hashimoto F., Process controls for surface integrity generated by hard turning” 3rd CIRP Conference on Surface Integrity (CIRP CSI), Procedia CIRP, 45, 15-18, 2016.
  • Abboud E., Attia H. Shi, B., Damir, A., Thomson, V., Mebrahtu Y., Residual stresses and surface integrity of Ti-alloys during finish turning –guidelines for compressive residual stresses, 3rd CIRP Conference on Surface Integrity (CIRP CSI), Procedia CIRP, 45, 55-58, 2016.
  • Sharman, A.R.C. Hughes, J.I., Ridgway, K., The effect of tool nose radius on surface integrity and residual stresses when turning Inconel 718, Journal of Materials Processing Technology, 216, 123-132, 2015.
  • Marques, A., Guimarães, C., Batista da Silva, R., Fonseca, M. da P. C. Sales, W. F., Machado, Á. R., Surface Integrity Analysis of Inconel 718 after Turning with Different Solid Lubricants Dispersed in Neat Oil Delivered by MQL, Procedia Manufacturing, 5, 609–620, 2016.
  • Iturbe, A., Hormaetxe, E. Garay, A., Arrazola, P.J., Surface integrity analysis when machining Inconel 718 with conventional and cryogenic cooling, 3rd CIRP Conference on Surface Integrity (CIRP CSI), Procedia CIRP, 45, 67-70, 2016.
  • Devillez, A., Coz, G.L., Dominiak, S., Dudzinski, D., Dry machining of Inconel 718, workpiece surface integrity, Journal of Materials Processing Technology, 211, 1590-1598, 2011.
  • Yao, C., Lin, J., Wu, D., Ren, J., Surface integrity and fatigue behavior when turning ɣ-TiAl alloy with optimized PVD-coated carbide inserts, Chinese Journal of Aeronautics, 31(4), 826-836, 2018.
  • Liu, G., Huang, C., Zou B., Wang, X., Liu, Z., Surface integrity and fatigue performance of 17-4PH stainless steel after cutting operations, Surface & Coatings Technology, 307, 182-189, 2016.
  • Bordina, A., Bruschia, S., Ghiottia, A., The effect of cutting speed and feed rate on the surface integrity in dry turning of CoCrMo alloy, 2nd CIRP Conference on Surface Integrity (CSI), Procedia CIRP, 13, 219-224, 2014.
  • Pretorius, C.J., Soo, S. L., Aspinwall, D. K., Harden, P. M. M’Saoubi, Rachid, Mantle, A. L., Tool wear behaviour and workpiece surface integrity when turning Ti– 6Al–2Sn–4Zr–6Mo with polycrystalline diamond tooling, CIRP Annals - Manufacturing Technology, 64, 109-112, 2015.
  • Gurbuz, H., AISI 316l Çeliğin İşlenmesinde Kesici Takım Geometrisi ve Kaplama Tiplerinin Yüzey Bütünlüğü Üzerindeki Etkilerinin Araştırılması, Doktora Tezi, Gazi Üniversitesi, Türkiye, 1-179, 2012.
  • Gürbüz H., Şeker, U., Kafkas F., Investigation of effects of cutting insert rake face forms on surface integrity, The International Journal of Advanced Manufacturing Technology, 90, (9-12), 3507-3522, 2017.
  • ISO 3685, Tool-life testing with single-point turning tools, 1-12, 1993.
  • Sandvik Coromant, Sipariş Katoloğu- Sandvik Coromanttan Kesici Takımlar 2009, C-2900:8 AB Sandvik Coromant, İsveç, A123, 2010.
  • Sandvik Coromant, Teknik Kılavuz, C-2900:7 AB Sandvik Coromant, İsveç A101, 103-105, 2010.
  • Sandvik Coromant El Kitabı, Talaşlı İmalat Teknolojisi Teknik Kılavuzu, C-2900:3 AB Sandvik Coromant, İsveç, A73, 2005.
  • Outeiro, J.C., Dias A.M., Jawahir I.S., On the effects of residual stresses induced by coated and uncoated cutting tools with finite edge radii in turning operations, Annals of the CIRP, 55(1), 111-116, 2006.
  • Outeiro, J.C., Dias, A.M., Lebrun, J.L., Astakhov, V.P., Machining residual stresses in AISI 316L steel and their correlation with the cutting parameters, Machining Science and Technology, 6(2), 251-270, 2002.
  • M'Saoubi, R., Outeiro, J.C., Changeux, B., Lebrun, J.L., Moraäo Dias, A. “Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels, Journal of Materials Processing Technology, 96, 225-233, 1999.
  • Outeiro, J.C., Pina, J.C., M’Saoubi, R., Pusavec, F., Jawahir, I.S., Analysis of residual stresses induced by dry turning of difficult-to-machine materials, CIRP Annals - Manufacturing Technology, 57, 77-80, 2008.
  • Cullity, B.D., Elements of X-ray diffraction 2nd ed., Addison-Wesley Series in Metallurgy and Materials, Canada, 86-87, 460-461, 1978.
  • Chen, W., Cutting forces and surface finish when machining medium hardness steel using CBN tools, International Journal of Machine Tools & Manufacture, 40, 455-466, 2000.
  • Trent, E.M., Metal cutting, Butterworths Press, London, 1-171, 1989.
  • Şeker, U., Takım tasarımı ders notları, Gazi Üniversitesi Teknik Eğitim Fakültesi, Ankara, 5-11, 33-44, 47-72, 1997.
  • Zhao, J., Ai, X., Li, Z., Finite element analysis of cutting forces in high speed machining, Materials Science Forum, 532-533, 753-756, 2006.
  • Çiftçi, İ., Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools, Tribology International, 39, 565-569, 2006.
  • Aslantaş, K., Ucun, İ., Ucun, İ., Ortagonal kesme işleminde kesici takım kaplama malzemesinin talaş kayma açısı üzerindeki etkisinin modellenmesi, 2. Ulusal Tasarım imalat ve Analiz Kongresi, Balıkesir, 10-19, 2010.
  • Shih, A.J., Finite element analysis of the rake angle effects in orthogonal cutting, International Journal of Mechanical Sciences, 38, (1), 1-17, 1996.
  • Moufki, A., Molinari, A., Dudzinski, D., Modelling of orthogonal cutting with a temperature dependent friction law, Journal of Mechanical Physics of Solids, 46, 2103-2138, 1998.
  • Saglam, H., Unsacar, F., Yaldiz, S., Investigation of the effect of rake angle and approaching angle on main cutting force and tool tip temperature, International Journal of Machine Tools & Manufacture, 46, 132-141, 2006.
  • Günay, M., Şeker, U., Kesici takim talaş açısının ilerleme kuvveti üzerindeki etkisinin araştırılması”, Politeknik Dergisi, 8(4), 323-328, 2005.
  • Günay, M., Korkut, İ., Aslan, E., Şeker, U., Experimental investigation of the effect of cutting tool rake angle on main cutting force, Journal of Materials Processing Technology, 166, 44-49, 2005.
  • Günay, M., Aslan, E., Korkut, İ., Şeker, U., Investigation of the effect of rake angle on main cutting force, International Journal of Machine Tools & Manufacture, 44, 953-959, 2004.
  • Boothroyd, G., Fundamentals of metal machining and machine tools, Second edition, McGraw-Hill, New York, 166-172, 1989.
  • Shaw, M. C., Metal cutting principles, Oxford University Press, Oxford, 1-9, 1989.
  • De Garmo, E.P., Black, J.T., Kohser, R.A., Materials and processes in manufacturing, Prentice-Hall Inc., New Jersey, 214-652, 1997.
  • Gökkaya, H., Sur, G., Dilipak, H. “PVD ve CVD Kaplamalı sementit karbür kesici takımların işleme parametrelerine bağlı olarak yüzey pürüzlülüğüne etkisinin deneysel olarak incelenmesi”, Teknoloji Dergisi, 7(3), 473-478, 2004.
  • Munoz–Escalona, P., Cassier, Z., Influence of the critical cutting speed on the surface finish of turned steel, Wear, 218, 103-109, 1998.
  • Thamizhmanii, S., Kamarudin, K.E., Rahim, A., Saparudin, A., Hassan, S., Tool wear and surface roughness in turning AISI 8620 using coated ceramic tool, Proceedings of the World Congress on Engineering, Vol II WCE, London, 1157-1161, 2007.
  • Hagiwara, M., Chen, S., Jawahir, I.S., Contour finish turning operations with coated grooved tools: Optimization of Machining Performance, Journal of Materials Processing Technology, 209, 332-342, 2009.
  • Günay, M. Investigation of the interaction between the surface quality and rake angle in machining of AISI 1040 steel, Journal of Engineering and Natural Sciences, 26, 105-111, 2007.
  • Outeiro, J.C., Umbrello, D., M’Saoubi, R., Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L Steel, International Journal of Machine Tools & Manufacture, 46(14), 1786-1794, 2006.
  • Maranhão, C., Davim P.J., Finite element modelling of machining of AISI 316 steel: Numerical simulation and experimental validation, Simulation Modelling Practice and Theory, 18, 139-156, 2010.
  • Jacobus, J.K., Modelling of the in-plane biaxial residual stress from machining, PhD Thesis, University of Illinois, Urbana-Chambaign, A.B.D., 1-23, 1999.
  • Kishawy, H.E.A., Chip formation and surface integrity in high speed machining of hardened steel, Doctor of Philosophy, Mc Master Universty, Canada, 87-89, 1998.
  • Liu, C.R., Barash, M.M., Variables governing patterns of mechanical residual stress in a machined surface, Journal of Engineering for Industry, Transactions ASME, 104(3), 257-264, 1982.
  • Sandvik Coromant, Modern metal cutting–A practical handbook, English Edition, Sandvik Coromant, Sweden, I-III, 1994.
  • Matsumoto, Y., Hashimoto, F., Lahoti, G., Surface integrity generated by precision hard turning, Annals of the CIRP, 48(1), 59-62, 1999.
  • Sharman, A.R.C., Hughes, J.I., Ridgway, K., An analysis of the residual stresses generated in Inconel 718 when turning, Journal of Materials Processing Technology, 173, 359-367, 2006.
  • Dahlman, P., Gunnberg, F., Jacobson, M., The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning, Journal of Materials Processing Technology, 147, 181-184, 2004.
  • Sasahara, H., Obikawa, T., Shirakashi, T., Prediction model of surface residual stress within a machined surface by combining two orthogonal plane models, International Journal of Machine Tools & Manufacture, 44, 815-822, 2004.
  • Gunnberg, F., Escursell M., Jacobson, M., The influence of cutting parameters on residual stresses and surface topography during hard turning of 18MnCr5 case carburised steel, Journal of Materials Processing Technology, 174, 82-90, 2006.
  • Bosheh, S.S., Mativenga, P.T., White layer formation in hard turning of H13 tool steel at high cutting speeds using CBN tooling, International Journal of Machine Tools and Manufacture, 46, 225-233, 2006.
  • Jawahir, I.S., Brinksmeier, E., Saoubi, R.M., Aspinwall, D.K., Outeiro, J.C., Meyer, D., Umbrello, D., Jayala, A.D., Surface integrity in material removal processes: Recent advances, CIRP Annals - Manufacturing Technology, 60, 603-626, 2011.
  • Barbacki, A., Kawalec, M., Hamrol, A., Turning and grinding as a source of microstructural changes in the surface layer of hardened steel, Journal of Materials Processing Technology, 133, 21-25, 2003.
  • Ulutan, D., Ozel, T., Machining induced surface integrity in titanium and nickel alloys: A review, International Journal of Machine Tools and Manufacture, 51, 250-280, 2011.
  • Ezugwu, E.O., Wang, Z.M., Okeke, C.I., Tool life and surface integrity when machining Inconel 718 with PVD and CVD coated tools, Tribology Transactions, 42(2), 353-360, 1999.
  • Yang, X., Liu, C.R., Machining titanium and its alloys, Machining Science and Technology, 3(1), 107-139, 1999.
  • Kishawy, H.A., Elbestawi, M.A., Tool wear and surface integrity during high-speed turning of hardened steel with polycrystalline cubic boron nitride tools, Journal of Engineering Manufacture, 215, 755-767, 2001.
  • Che-Haron, C.H. “Tool life and surface integrity in turning titanium alloy”, Journal of Materials Processing Technology, 118, 231-237, 2001.
  • Che-Haron, C.H., Jawaid, A., The effect of machining on surface integrity of titanium alloy Ti–6%Al–4%V”, Journal of Materials Processing Technology, 166, 188-192, 2005.
  • Sharman, A.R.C., Hughes, J.I., Ridgway, K., Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy, Machining Science And Technology, 8(3), 399-414, 2004.
  • Pawade, R.S., Joshi, S.S., Brahmankar P.K., Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718, International Journal of Machine Tools and Manufacture, 48, 15-28, 2008.
  • Coelho, R.T., Silva, L.R., Braghini Jr, A., Bezerra, A.A., Some effects of cutting edge preparation and geometric modifications when turning Inconel 718 at high cutting speeds, Journal of Materials Processing Technology, 148(1), 147-153, 2004.
  • Umbrello, D., Filice, L., Improving surface integrity in orthogonal machining of hardened AISI 52100 steel by modeling white and dark layers formation, CIRP Annals - Manufacturing Technology, 58, 73-76, 2009.
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hüseyin Gürbüz 0000-0003-1391-172X

Ulvi Şeker 0000-0001-6455-6858

Fırat Kafkas 0000-0003-3257-7413

Yayımlanma Tarihi 25 Ekim 2019
Gönderilme Tarihi 17 Ağustos 2018
Kabul Tarihi 25 Haziran 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Gürbüz, H., Şeker, U., & Kafkas, F. (2019). AISI 316L çeliğinin tornalanmasında kesici takım formlarının yüzey bütünlüğü üzerine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 225-240. https://doi.org/10.17341/gazimmfd.454386
AMA Gürbüz H, Şeker U, Kafkas F. AISI 316L çeliğinin tornalanmasında kesici takım formlarının yüzey bütünlüğü üzerine etkisi. GUMMFD. Ekim 2019;35(1):225-240. doi:10.17341/gazimmfd.454386
Chicago Gürbüz, Hüseyin, Ulvi Şeker, ve Fırat Kafkas. “AISI 316L çeliğinin tornalanmasında Kesici takım formlarının yüzey bütünlüğü üzerine Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 1 (Ekim 2019): 225-40. https://doi.org/10.17341/gazimmfd.454386.
EndNote Gürbüz H, Şeker U, Kafkas F (01 Ekim 2019) AISI 316L çeliğinin tornalanmasında kesici takım formlarının yüzey bütünlüğü üzerine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 1 225–240.
IEEE H. Gürbüz, U. Şeker, ve F. Kafkas, “AISI 316L çeliğinin tornalanmasında kesici takım formlarının yüzey bütünlüğü üzerine etkisi”, GUMMFD, c. 35, sy. 1, ss. 225–240, 2019, doi: 10.17341/gazimmfd.454386.
ISNAD Gürbüz, Hüseyin vd. “AISI 316L çeliğinin tornalanmasında Kesici takım formlarının yüzey bütünlüğü üzerine Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/1 (Ekim 2019), 225-240. https://doi.org/10.17341/gazimmfd.454386.
JAMA Gürbüz H, Şeker U, Kafkas F. AISI 316L çeliğinin tornalanmasında kesici takım formlarının yüzey bütünlüğü üzerine etkisi. GUMMFD. 2019;35:225–240.
MLA Gürbüz, Hüseyin vd. “AISI 316L çeliğinin tornalanmasında Kesici takım formlarının yüzey bütünlüğü üzerine Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 1, 2019, ss. 225-40, doi:10.17341/gazimmfd.454386.
Vancouver Gürbüz H, Şeker U, Kafkas F. AISI 316L çeliğinin tornalanmasında kesici takım formlarının yüzey bütünlüğü üzerine etkisi. GUMMFD. 2019;35(1):225-40.

Cited By