Kesir dereceli PI denetleyici içeren zaman gecikmeli bir bölgeli yük frekans kontrol sisteminin kazanç ve faz payı tabanlı kararlılık analizi
Yıl 2019,
, 945 - 960, 23.05.2019
Saffet Ayasun
,
Şahin Sönmez
Öz
Bu çalışmada, kesir dereceli oransal - integral (FOPI) denetleyici içeren zaman gecikmeli bir bölgeli yük frekans kontrol (YFK) sisteminin kazanç ve faz payı (GPM) tabanlı kararlılık analizi gerçekleştirilmiştir. YFK sistemlerinin kontrolünde açık haberleşme ağlarının yoğun kullanımı sistemde zaman gecikmelerinin yaşanmasına neden olmaktadır. Meydana gelen zaman gecikmesi değerlerini hesaplamak için, istenilen GPM değerleri ve FOPI denetleyicinin farklı parametre değerlerinde karakteristik denklemin sanal eksen üzerindeki köklerini hesaplayan analitik bir yöntem önerilmiştir. Son olarak, Matlab/Simulink ortamında yapılan benzetim çalışmaları ve zaman gecikmeli sistemlerde köklerin konumu hakkında bilgi veren QPmR algoritması yardımıyla FOPI denetleyici içeren bir bölgeli YFK sistemi için elde edilen sonuçlar doğrulanmıştır.
Kaynakça
- Ayasun S., Computation of time delay margin for power system small-signal stability, European Transactions on Electrical Power, 19 (7), 949-968, 2009.
- Bevrani H., Hiyama T., On load-frequency regulation with time delays: design and real-time implementation, IEEE Transactions. Energy Convers., 24(1), 292-300, 2009.
- Bhowmik S., Tomsovic K., Bose A., Communication model for third party load frequency control, IEEE Transactions on Power Systems, 19(1),543-548, 2004.
- Liu M., Yang L., Gan D., Wang D., Gao F., Chen Y., The stability of AGC systems with commensurate delays, European Transactions on Electrical Power, 17(6), 615-627, 2007.
- Naduvathuparambil B., Valenti M. C., Feliachi A., Communication delays in wide area measurement systems, in Proceedings 2002 Southeastern Symposium on System Theory, Huntsville, 118-122, 19 March 2002.
- Yu X., Tomsovic K., Application of linear matrix inequalities for load frequency control with communication delays, IEEE Transactions on Power Systems, 19(3), 1508-1515, 2004.
- Saadat H., Power System Analysis, McGraw-Hill Inc., 1999.
- Sondhi S., Hote Y.V., Fractional Order PID Controller for Load Frequency Control, Energy Conversion and Management, 85, 343-353, 2014.
- Kundur P., Power System Stability and Control, McGraw-Hill, 1994.
- Alomoush M.I., Load frequency control and automatic generation control using fractional-order controllers, Electr. Eng., 91(7), 357-368, 2010.
- Zamani M., Ghartemani M.K., Sadati N., Parniani M., Design of fractional order PID controller for an AVR using particle swarm optimization, Control Eng Practice, 17(12), 1380–1387, 2009.
- Pan I., Das S., Chaotic multi-objective optimization based design of fractional order PIλDμ controller in AVR system, Int J Electr Power Energy Syst, 43(1), 393–407, 2012.
- Tang Y., Cui M., Hua C.H., Li L., Yang Y., Optimum design of fractional order PIλDμ controller for AVR system using chaotic ant swarm”, Expert Syst Appl., 39(8), 6887–6896, 2012.
- Taher S.A., Fini M.H., Aliabadi S.F., Fractional order PID controller design for LFC in electric power systems using imperialist competitive algorithm”, Ain Shams Engineering Journal, 5(1), 121-135, 2014.
- Chen J., Gu G., Nett C.N., A new method for computing delay margins for stability of linear delay systems, System and Control Letters,;26(2), 101–117, 1995.
- Walton K.E., Marshall J.E., Direct method for TDS stability analysis, IEEE Proceeding Part D., 134, 101-107, 1987.
- Rekasius Z.V., A stability test for systems with delays, in Proceedings of Joint Automatic Control Conference, San Francisco, Paper No. TP9-A, 1980.
- Olgac N., Sipahi R., An exact method for the stability analysis of time-delayed linear time invariant (LTI) systems, IEEE Transactions on Automatic Control, 47(5), 793-797, 2002.
- Sönmez Ş., Ayasun S., Nwankpa C.O., An Exact Method for Computing Delay Margin for Stability of Load Frequency Control Systems with Constant Communication Delays, IEEE Trans. Power Systems, 31(1), 370-377, 2016.
- Sönmez, Ş., Ayasun, S. and Eminoğlu, U., Computation of Time Delay Margins for Stability of a Single-Area Load Frequency Control System with Communication Delays, WSEAS Transactions on Power Systems, 9, 67-76, 2014.
- Zhang C.K. Jiang L., Wu Q.H., He Y., Wu M., Delay-Dependent Robust Load Frequency Control for Time Delay Power Systems, IEEE Transactions on Power Systems, 28(3), 2192-2201, 2013.
- Pakzad M.A., Pakzad S., Nekoui, M.A., Stability analysis of multiple time delayed fractional order systems, American Control Conference, Washington, 170-175, 17-19 June, 2013.
- Pakzad M. A., Nekoui M.A., Direct Method for Stability Analysis of Fractional Delay Systems, Int. J. Comput. Commun., 8(6), 863-868, 2013.
- Pakzad M. A., Nekoui M.A., Stability map of multiple time delayed fractional order systems, Int. J. Comput. Commun., 12(1), 37-43, 2014.
- Pakzad M.A., Pakzad S., Nekoui M.A., Exact method for the stability analysis of time delayed linear-time invariant fractional-order systems, IET Control Theory & Applications, 9(16), pp. 2357-2368, 2015.
- Chang C.H., Han K.W., Gain margins and phase margins for control systems with adjustable parameters, J. Guid. Control Dyn., 13 (3), 404–408, 1990.
- Gündüz H., Sönmez Ş., Ayasun S., Comprehensive gain and phase margins based stability analysis of micro-grid frequency control system with constant communication time delays, IET Generation, Transmission & Distribution, 11(3), pp. 719-729, 2017.
- Vyhlídal T., Zítek P., Mapping based algorithm for large-scale computation of quasi-polynomial zeros, IEEE Transactions on Automatic Control, 54 (1), 171-177, 2009.
- Vyhlídal T., Olgaç N., Kučera, V., Delayed resonator with acceleration feedback – Complete stability analysis by spectral methods and vibration absorber design, Journal of Sound and Vibration, , 333(25), 6781–6795, 2014.
- Simulink, Model-based and system-based design using simulink, Natick, MathWorks, 2000.
- Sönmez Ş., Ayasun S., Gain and phase margins based delay-dependent stability analysis of single-area load frequency control system with constant communication time delay, Transaction of the Institute of Measurement and Control, DOI: 10.1177/0142331217690221.