Araştırma Makalesi
BibTex RIS Kaynak Göster

Toz yatağı katmanlı imalat prosesinde yüzey dokusu ve form karakterizasyonu

Yıl 2019, , 1653 - 1664, 29.05.2019
https://doi.org/10.17341/gazimmfd.461588

Öz

Toz yatağında lazer katmanlı (eklemeli) imalat sonrası elde edilen yüzey
kalitesi, parçaların, boyutsal doğruluğu ve herhangi bir yüzey işlemi
olmaksızın kullanımını sınırlandıran etkenlerden biridir. Bu durumun temel
sebebi prosesin doğası gereği ortaya çıkan ve diğer katmanlı imalat
proseslerinde de görülen merdiven etkisidir. Merdiven etkisi görülen bir
komponent yüzeyindeki geometrik ve form hataları montaj edilebilirlik, akış
performans düşüşü ve yorulma başta olmak üzere çok sayıda riski beraberinde getirmektedir.
Merdiven etkisinin engellenmesi için katmanlı imalat proses parametreleri
optimizasyonu, ikincil işlemler ile yüzey temizleme ve/veya proses modelleme
uygulanabilir. Bunlar arasından ikincil işlemler, ek zaman ve maliyet ortaya
çıkardığı için daha az tercih edilmektedir. Proses modellemede ise, literatürde
kullanılan geometrik modellerin sadece katman kalınlığını dikkate alması,
farklı malzeme ve proses parametreleri için yakınsama oranlarını yetersiz
kılmaktadır. Bunlara ek olarak parametre optimizasyonu tek bir parçaya yönelik
olduğunda, farklı geometrik unsurların etkileri görülememektedir. Bu çalışmada
sırası ile düz, açılı ve farklı yuvarlatma yarıçaplarına sahip yenilikçi numune
geometrileri tasarlanmış ve Inconel 625 malzemeden toz yatağında lazer katmanlı
imalat ile üretilmiştir. Üretilen numuneler üzerinde yüzey dokusu ve form
karakterizasyon incelemeleri gerçekleştirilmiştir. Farklı unsur ve ölçüler için
elde edilen sonuçlar sunularak, geometrik özelliklere bağlı yüzey kalitesi ve
form değişim eğilimleri elde edilmiş, parametrelerin etkileri tartışılmıştır.

Kaynakça

  • 1. ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, ASTM International, 2015.
  • 2. VDI 3404, Additive Manufacturing: Basics, Definitions, Processes, VDI, 2014.
  • 3. Levy G. N., Schindel R., Kruth J. P., Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives, CIRP Annals-Manufacturing Technology, 52(2), 589-609, 2003.
  • 4. Poyraz Ö., Kuşhan M.C., Investigation of the effect of different process parameters for laser additive manufacturing of metals, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (2), 730-742, 2018.
  • 5. Hague R., Unlocking the design potential of rapid manufacturing, Rapid manufacturing: an industrial revolution for the digital age, John Wiley & Sons, Ltd., ABD, 2006
  • 6. Yasa E., Poyraz O., Solakoglu E.U., Akbulut G., Oren S., A Study on the Stair Stepping Effect in Direct Metal Laser Sintering of a Nickel-based Superalloy, Procedia CIRP, 45, 175-178, 2016.
  • 7. Herderick E., Additive manufacturing of metals: A review, Materials Science & Technology Conference, Ohio, ABD, 1413-1425, 16-20 October, 2011.
  • 8. Hague R., Campbell I., Dickens P., Implications on design of rapid manufacturing, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217 (1), 25-30, 2003.
  • 9. Yasa E., Demir F., Akbulut G., Cızıoğlu N., Pilatin S., Benchmarking Of Different Powder-Bed Metal Fusion Processes For Machine Selection in Additive Manufacturing, Proceedings of Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 390-403, August, 2014.
  • 10. Poyraz Ö., Yasa E., Akbulut G., Orhangül A., Pilatin, S., Investigation of Support Structures for Direct Metal Laser Sintering (DMLS) of In625 Parts, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 560-574, 7-9 August, 2015.
  • 11. Townsend A., Senin N., Blunt L., Leach R.K., Taylor J.S., Surface texture metrology for metal additive manufacturing: a review, Precision Engineering, 46 (2016) 34–47.
  • 12. Zecchino M., How to choose the correct stylus for any application. Veeco; 2005.
  • 13. Ross I., Kumstel J., Bremen S., Willenborg E., Laser polishing of laser additive manufactured surfaces made from Inconel 718 and ASTM F75. Achieving precision tolerances in additive manufacturing. In: ASPE 2015 Spring Topical Meeting, ASPE, 2015.
  • 14. Beard M., Ghita O., Evans K.E. Using Raman spectroscopy to monitor surface finish and roughness of components manufactured by selective laser sintering. J Raman Spectrosc 2011; 42:744–8.
  • 15. Krolczyk G., Raos P., Legutko S., Experimental analysis of surface roughnessand surface texture of machined and fused deposition modelled parts.Tehniˇcki Vjesnik—Tech Gaz 2014;21:217–21, 2014.
  • 16. Gomez C., Su R., Thompson A., DiSciacca J., Lawes S., Leach R.K., Optimization of surface measurement for metal additive manufacturing using coherence scanning interferometry, Optical Engineering, 56(11), 111714, 2017.
  • 17. Król M., Kujawa M., Dobrzański L.A., Tański T., Influence of technological parameters on additive manufacturing steel parts in Selective Laser Sintering, Archives of Materials Science and Engineering, Vol. 67, No. 2, pp 84-92, 2014.
  • 18. Taufik M., Jain P.K., Role of build orientation in layered manufacturing: a review, International Journal of Manufacturing Technology and Management, Vol. 27, No. 1-3, pp 47-73, 2013.
  • 19. Strano G., Hao L., Everson R. M., Evans K. E., Surface roughness analysis, modelling and prediction in selective laser melting. Journal of Materials Processing Technology, 213(4), 589-597, 2013.
  • 20. Gibson I., Rosen D.W., Stucker B., Post-Processing in Additive Manufacturing Technologies, Springer, New York, US, pp 415-435, 2010.
  • 21. Fischer M., Schöppner V., Finishing of ABS-M30 parts manufactured with fused deposition modeling with focus on dimensional accuracy, Proceedings of 25th Solid Freeform Fabrication Symposium, 923-934, 2014.
  • 22. Williams R.E., Walczyk D.F., Dang H.T., Using abrasive flow machining to seal and finish conformal channels in laminated tooling, Rapid Prototyping Journal 13/2 (2007) 64–75.
  • 23. Kumbhar N.N., Mulay A.V., Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review, J. Inst. Eng. India Ser. C (August 2018) 99(4):481–487.
  • 24. Uhlmann E., Schmiedel C., Wendler J., CFD Simulation for the abrasive machining process, Procedia CIRP 31 (2015) 209-214.
  • 25. Hague R., Mansour S., Saleh N., Material and design considerations for rapid manufacturing, International Journal of Production Research, Vol. 42, No. 22, pp 4691-4708, 2004.
  • 26. Thomas D., Bibb R., Identifying the geometric constraints and process specific challenges of selective laser melting, In Proceedings of Time Compression Technologies Rapid Manufacturing Conference, Coventry, United Kingdom, 2008.
  • 27. Over C., Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAl6V4 mitSelective Laser Melting, PhD Thesis, RWTH Aachen, 2003.
  • 28. Gonzalez J.A., Mireles J., Stafford S.W., Perez M.A., Terrazas C.A., Wicker R.B., Characterization of Inconel 625 Fabricated Using Powder-Bed-Based Additive Manufacturing Technologies, Journal of Materials Processing Technology, https://doi.org/10.1016/j.jmatprotec.2018.08.031
  • 29. EOS material datasheet for Nickel Alloy IN625.
Yıl 2019, , 1653 - 1664, 29.05.2019
https://doi.org/10.17341/gazimmfd.461588

Öz

The surface quality obtained after laser powder bed
additive manufacturing
is one of the factors that limits the use of part
without any surface treatment. The main reason of this situation is the stair
effect form as a result of the layered nature of the process.
Geometric and form errors on a component surface with a stair effect
bring numerous risks, especially in terms of assembly operations, flow performance
and fatigue resistance decrease. To prevent the stair effect and surface
irregularities, parameter optimization, post processes and/or process modeling
can be studied. Among these, post processes are less preferred because they
result in additional time and cost. In the process modeling, the geometric
models used in the literature only take into account the thickness of the
layer, making the convergence rates for different material and process
parameters inadequate. In addition, when the parameter optimization is directed
for a single part, the effects of different geometrical elements cannot be
seen. In this study, innovative test artifacts with flat, angled and curved
faces were designed and produced with laser powder bed additive manufacturing
of Inconel 625 material. Surface texture and form characterization studies were
performed on the artifacts. By presenting the results obtained for different features
and dimensions, surface texture and form change trends due to geometric
properties were obtained and the effects of the parameters were discussed

Kaynakça

  • 1. ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, ASTM International, 2015.
  • 2. VDI 3404, Additive Manufacturing: Basics, Definitions, Processes, VDI, 2014.
  • 3. Levy G. N., Schindel R., Kruth J. P., Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives, CIRP Annals-Manufacturing Technology, 52(2), 589-609, 2003.
  • 4. Poyraz Ö., Kuşhan M.C., Investigation of the effect of different process parameters for laser additive manufacturing of metals, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (2), 730-742, 2018.
  • 5. Hague R., Unlocking the design potential of rapid manufacturing, Rapid manufacturing: an industrial revolution for the digital age, John Wiley & Sons, Ltd., ABD, 2006
  • 6. Yasa E., Poyraz O., Solakoglu E.U., Akbulut G., Oren S., A Study on the Stair Stepping Effect in Direct Metal Laser Sintering of a Nickel-based Superalloy, Procedia CIRP, 45, 175-178, 2016.
  • 7. Herderick E., Additive manufacturing of metals: A review, Materials Science & Technology Conference, Ohio, ABD, 1413-1425, 16-20 October, 2011.
  • 8. Hague R., Campbell I., Dickens P., Implications on design of rapid manufacturing, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217 (1), 25-30, 2003.
  • 9. Yasa E., Demir F., Akbulut G., Cızıoğlu N., Pilatin S., Benchmarking Of Different Powder-Bed Metal Fusion Processes For Machine Selection in Additive Manufacturing, Proceedings of Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 390-403, August, 2014.
  • 10. Poyraz Ö., Yasa E., Akbulut G., Orhangül A., Pilatin, S., Investigation of Support Structures for Direct Metal Laser Sintering (DMLS) of In625 Parts, Proceedings of the Solid Freeform Fabrication Symposium, Austin, Texas, ABD, 560-574, 7-9 August, 2015.
  • 11. Townsend A., Senin N., Blunt L., Leach R.K., Taylor J.S., Surface texture metrology for metal additive manufacturing: a review, Precision Engineering, 46 (2016) 34–47.
  • 12. Zecchino M., How to choose the correct stylus for any application. Veeco; 2005.
  • 13. Ross I., Kumstel J., Bremen S., Willenborg E., Laser polishing of laser additive manufactured surfaces made from Inconel 718 and ASTM F75. Achieving precision tolerances in additive manufacturing. In: ASPE 2015 Spring Topical Meeting, ASPE, 2015.
  • 14. Beard M., Ghita O., Evans K.E. Using Raman spectroscopy to monitor surface finish and roughness of components manufactured by selective laser sintering. J Raman Spectrosc 2011; 42:744–8.
  • 15. Krolczyk G., Raos P., Legutko S., Experimental analysis of surface roughnessand surface texture of machined and fused deposition modelled parts.Tehniˇcki Vjesnik—Tech Gaz 2014;21:217–21, 2014.
  • 16. Gomez C., Su R., Thompson A., DiSciacca J., Lawes S., Leach R.K., Optimization of surface measurement for metal additive manufacturing using coherence scanning interferometry, Optical Engineering, 56(11), 111714, 2017.
  • 17. Król M., Kujawa M., Dobrzański L.A., Tański T., Influence of technological parameters on additive manufacturing steel parts in Selective Laser Sintering, Archives of Materials Science and Engineering, Vol. 67, No. 2, pp 84-92, 2014.
  • 18. Taufik M., Jain P.K., Role of build orientation in layered manufacturing: a review, International Journal of Manufacturing Technology and Management, Vol. 27, No. 1-3, pp 47-73, 2013.
  • 19. Strano G., Hao L., Everson R. M., Evans K. E., Surface roughness analysis, modelling and prediction in selective laser melting. Journal of Materials Processing Technology, 213(4), 589-597, 2013.
  • 20. Gibson I., Rosen D.W., Stucker B., Post-Processing in Additive Manufacturing Technologies, Springer, New York, US, pp 415-435, 2010.
  • 21. Fischer M., Schöppner V., Finishing of ABS-M30 parts manufactured with fused deposition modeling with focus on dimensional accuracy, Proceedings of 25th Solid Freeform Fabrication Symposium, 923-934, 2014.
  • 22. Williams R.E., Walczyk D.F., Dang H.T., Using abrasive flow machining to seal and finish conformal channels in laminated tooling, Rapid Prototyping Journal 13/2 (2007) 64–75.
  • 23. Kumbhar N.N., Mulay A.V., Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review, J. Inst. Eng. India Ser. C (August 2018) 99(4):481–487.
  • 24. Uhlmann E., Schmiedel C., Wendler J., CFD Simulation for the abrasive machining process, Procedia CIRP 31 (2015) 209-214.
  • 25. Hague R., Mansour S., Saleh N., Material and design considerations for rapid manufacturing, International Journal of Production Research, Vol. 42, No. 22, pp 4691-4708, 2004.
  • 26. Thomas D., Bibb R., Identifying the geometric constraints and process specific challenges of selective laser melting, In Proceedings of Time Compression Technologies Rapid Manufacturing Conference, Coventry, United Kingdom, 2008.
  • 27. Over C., Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAl6V4 mitSelective Laser Melting, PhD Thesis, RWTH Aachen, 2003.
  • 28. Gonzalez J.A., Mireles J., Stafford S.W., Perez M.A., Terrazas C.A., Wicker R.B., Characterization of Inconel 625 Fabricated Using Powder-Bed-Based Additive Manufacturing Technologies, Journal of Materials Processing Technology, https://doi.org/10.1016/j.jmatprotec.2018.08.031
  • 29. EOS material datasheet for Nickel Alloy IN625.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Özgür Poyraz 0000-0001-9892-5738

Ezgi Uğur Solakoğlu Bu kişi benim

Soner Ören Bu kişi benim

Cansinem Tüzemen Bu kişi benim

Güray Akbulut Bu kişi benim

Yayımlanma Tarihi 29 Mayıs 2019
Gönderilme Tarihi 19 Eylül 2018
Kabul Tarihi 15 Nisan 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Poyraz, Ö., Solakoğlu, E. U., Ören, S., Tüzemen, C., vd. (2019). Toz yatağı katmanlı imalat prosesinde yüzey dokusu ve form karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(3), 1653-1664. https://doi.org/10.17341/gazimmfd.461588
AMA Poyraz Ö, Solakoğlu EU, Ören S, Tüzemen C, Akbulut G. Toz yatağı katmanlı imalat prosesinde yüzey dokusu ve form karakterizasyonu. GUMMFD. Mayıs 2019;34(3):1653-1664. doi:10.17341/gazimmfd.461588
Chicago Poyraz, Özgür, Ezgi Uğur Solakoğlu, Soner Ören, Cansinem Tüzemen, ve Güray Akbulut. “Toz yatağı Katmanlı Imalat Prosesinde yüzey Dokusu Ve Form Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, sy. 3 (Mayıs 2019): 1653-64. https://doi.org/10.17341/gazimmfd.461588.
EndNote Poyraz Ö, Solakoğlu EU, Ören S, Tüzemen C, Akbulut G (01 Mayıs 2019) Toz yatağı katmanlı imalat prosesinde yüzey dokusu ve form karakterizasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34 3 1653–1664.
IEEE Ö. Poyraz, E. U. Solakoğlu, S. Ören, C. Tüzemen, ve G. Akbulut, “Toz yatağı katmanlı imalat prosesinde yüzey dokusu ve form karakterizasyonu”, GUMMFD, c. 34, sy. 3, ss. 1653–1664, 2019, doi: 10.17341/gazimmfd.461588.
ISNAD Poyraz, Özgür vd. “Toz yatağı Katmanlı Imalat Prosesinde yüzey Dokusu Ve Form Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/3 (Mayıs 2019), 1653-1664. https://doi.org/10.17341/gazimmfd.461588.
JAMA Poyraz Ö, Solakoğlu EU, Ören S, Tüzemen C, Akbulut G. Toz yatağı katmanlı imalat prosesinde yüzey dokusu ve form karakterizasyonu. GUMMFD. 2019;34:1653–1664.
MLA Poyraz, Özgür vd. “Toz yatağı Katmanlı Imalat Prosesinde yüzey Dokusu Ve Form Karakterizasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 34, sy. 3, 2019, ss. 1653-64, doi:10.17341/gazimmfd.461588.
Vancouver Poyraz Ö, Solakoğlu EU, Ören S, Tüzemen C, Akbulut G. Toz yatağı katmanlı imalat prosesinde yüzey dokusu ve form karakterizasyonu. GUMMFD. 2019;34(3):1653-64.