Araştırma Makalesi
BibTex RIS Kaynak Göster

Titanyum ile tane inceltmenin Al-25Zn alaşımının mikroyapı, mekanik ve korozyon özelliklerine etkisinin incelenmesi

Yıl 2020, , 311 - 322, 25.10.2019
https://doi.org/10.17341/gazimmfd.464676

Öz

Bu
çalışmada, bir adet ikili Al-25Zn alaşımı ve Al-25Zn-0,01Ti, Al-25Zn-0,03Ti,
Al-25Zn-0,04Ti, Al-25Zn-0,05Ti, Al-25Zn-0,075Ti, Al-25Zn-0,1Ti, Al-25Zn-0,2Ti,
Al-25Zn-0,4Ti, Al-25Zn-0,6Ti, Al-25Zn-0,8 ve Al-25Zn-1Ti olmak üzere 11 adet
üçlü alüminyum-çinko-titanyum alaşımı kokil kalıba döküm yöntemiyle üretildi.
Üretilen alaşımların içyapı, mekanik ve korozyon özellikleri incelendi. İçyapı
incelemeleri elektron mikroskobu(SEM) ve X-ışını kırınım(XRD) çalışmalarıyla
gerçekleştirildi. Mekanik özellikler ise Brinell sertlik ölçüm yöntemi ve çekme
deneyi yardımıyla belirlendi. Korozyon deneyleri elektrokimyasal test
düzeneğinde ASTM G5 standardına uygun olarak gerçekleştirildi. Al-25Zn ve
Al-25Zn-Ti alaşımlarının içyapılarının ana matris olarak α ve η fazlarından
oluştuğu, titanyum oranının %0,01’i aşması durumunda içyapıda Al3Ti fazının
çökelmeye başladığı gözlendi. Ayrıca Al-25Zn-Ti alaşımlarındaki dendrit veya
tanelerin boyutunun ikili alaşıma göre çok daha küçük olduğu görüldü. Al-25Zn
alaşımına %0,01 oranında yapılan titanyum katkısının sertlik, akma ve çekme
mukavemeti değerlerini artırdığı bu orandan daha yüksek katkıların ise azalttığı
gözlendi. Titanyum katkılarının korozyon özelliklerini olumsuz etkilediği
görüldü. Farklı oranlardaki titanyum katkıları nedeniyle Al-25Zn alaşımının
mekanik ve korozyon özelliklerinde meydana gelen değişimler alaşımların yapısal
özelliklerine dayandırılarak açıklandı.



 

Kaynakça

  • Goodwin F.E. ve Ponikvar A.L., Engineering Properties of Zinc Alloys, Cilt 3, International Lead Zinc Research Organization, Research Triangle Park, NC, USA, 1989.
  • Philip P.E. ve Schweitzer A., Metallic Materials: Physical, Mechanical, and Corrosion Properties, Cilt 1, Marcel Dekker Inc., USA, 2003.
  • Savaşkan T. ve Hekimoğlu A.P., Microstructure and mechanical properties of Zn–15Al-based ternary and quaternary alloys, Mater. Sci. Eng., A, 603, 52–57, 2014.
  • Savaşkan T. ve Alemdağ Y., Effects of pressure and sliding speed on the friction and wear properties of Al-40Zn-3Cu-2Si alloy: A comparative study with SAE 65 bronze, Mater. Sci. Eng., A, 496 (1-2), 517-523, 2008.
  • Savaşkan T. ve Hekimoğlu, A.P., Lubricated wear characteristics of Zn-15Al-3Cu-1Si alloy and SAE 660 bronze, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 145-154, 2018.
  • Prasad B.K., Sliding wear response of a zinc-based alloy and its composite and comparison with a gray cast iron: influence of exeternal lubrication and microstructural features, Mater. Sci. Eng., A, 392, 427-439, 2005.
  • Lyon R., The properties and applications of ZA alloys, The British Foundryman, August/ September, 344-349, 1986.
  • Savaşkan T. ve Hekimoğlu A.P., Effects of contact pressure and sliding speed on the unlubricated friction and wear properties of Zn-15Al-3Cu-1Si alloy, Tribol. Trans., 59 (6), 1114-1121, 2016.
  • Gervais E., Levert H. ve Bess M., The development of a family of zinc-based foundry alloys, American Foundrymen’s Society Transaction, 88 , 183-194, 1980.
  • Delneuville P., Tribological behaviour of Zn-Al alloys (ZA27) compared with bronze when used as a bearing material with high load and very low speed, Wear, 105, 283-292, 1985.
  • Savaşkan T. ve Hekimoğlu A.P., Effect of quench-ageing treatment on the microstructure and properties of Zn-15Al-3Cu alloy, , Int. J. Mater. Res.,, 106 (5), 481-487, 2015.
  • Savaşkan T. ve Hekimoğlu A.P., Microstructure and mechanical properties of Zn-15Al-based ternary and quaternary alloys, Mater. Sci. Eng., A, 603, 52-57, 2014.
  • Savaşkan T. ve Hekimoğlu A.P., Structure and mechanical properties of Zn-(5-25) Al alloys, Int. J. Mater. Res., 105 (11), 1084-1089, 2014.
  • Savaşkan T., Bican O. ve Alemdag Y., Developing aluminium–zinc-based a new alloy for tribological applications, J. Mater. Sci., 44 (8), 1969–1976, 2009.
  • Türk A., Durman M. ve Kayalı E.S., The effect of manganase on the microstructure and mechanical properties of zinc-aluminium based ZA-8 alloy, J. Mater. Sci., 42, 8298-8305, 2007.
  • Savaşkan T. ve Bican O., Effects of silicon content on the microstructural features and mechanical and sliding wear properties of Zn-40Al-2Cu-(0-5)Si alloys, Mater. Sci. Eng., A, 404, 259-269, 2005.
  • Prasad B.K., Effects of silicon addition and test parameters on sliding wear characteristics of zinc-based alloy containing 37,5% aluminium, Materials Transactions, 38 (8), 701-706, 1997.
  • Savaşkan T., Hekimoğlu, A.P. ve Pürçek, G., Effect of copper content on the mechanical and sliding wear properties of monotectoid-based zinc-aluminium-copper alloys, Tribol. Int., 37, 45-50, 2004.
  • Savaşkan T., Pürçek G. ve Hekimoğlu A.P., Effect of copper content on the mechanical and tribological properties of ZnAl27-based alloys, Tribol. Lett., 15 (3), 257-263, 2003.
  • Türk A., Durman M. ve Kayali E.S., The effect of manganese on the microstructure and mechanical properties of zinc–aluminium based ZA-8 alloy, J. Mater. Sci., 42 (19), 8298–8305, 2007.
  • Savaşkan T. ve Alemdağ Y., Effect of nickel additions on the mechanical and sliding wear properties of Al-40Zn-3Cu alloy, Wear, 268, 565-570, 2010.
  • Chemingui M., Khitouni M., Mesmacque G. ve Kolsi A.W., Effect of heat treatment on plasticity of Al–Zn–Mg alloy: microstructure evolution and mechanical properties, Physics Procedia, 2 (3), 1167–1174, 2009.
  • Shin S.S., Yeom G.Y., Kwak T.Y. ve Park I.M., Microstructure and mechanical properties of TiB-containing Al–Zn binary alloys, J. Mater. Sci. Technol., 32 (7), 653–659, 2016.
  • Hekimoğlu, A.P., Turan T.E., İsmailoğlu İ.İ., Akyol M.E. ve Şen E., Effect of grain refinement with boron on the microstructure and mechanical properties of Al-30Zn alloy, Journal of the Faculty of Engineering and Architecture of Gazi University, 18 (1), 2018.
  • Krajewski W.K., Greer A.L., Krajewski P.K. ve Piwowarski G., Grain refinement of zinc-aluminium based foundry alloys, 71st World Foundry Congress, Bilbao-Spain, 1286-1297, 19-21 Mayıs, 2014.
  • Krajewski W.K., Schumacher, P. ve Haberl K., Microstructural features of the grain-refined sand cast AlZn20 alloy, Arch. Metall. Mater., 55 (3), 2010.
  • Mikuszewski T. ve Michalik R., The influence of molding parameters on the structure of the ZnAl40Cu2Ti alloy, Solid State Phenomena, 246, 235-239, 2016.
  • Krajewski W.K. ve Haberl K., The effect of Ti on high-zinc al cast alloys structure and properties, Acta Metallurgica Slovaca, 17 (2), 123-128, 2011.
  • Buraś J., Szucki M., Piwowarski G., Krajewski W.K. ve Krajewski P.K., Strength properties examination of high zinc aluminium alloys inoculated with Ti addition, China Foundry, 14 (3), 211–215, 2017.
  • Krajewski W., The effect of Ti addition on properties of selected Zn–Al alloys, Phys. Status Solidi A, 147 (2), 389–399, 1995.
  • Presnyakov A.A., Gorban Y.A. ve Chrevyakova V.V., The aluminum-zinc phase diagram, Russ. J. Phys. Chem., 35 (6), 632-633, 1961.
  • Okamoto H., Schlesinger M.E. ve Mueller M.E., ASM Handbook Volume 3: Alloy Phase Diagrams, ASM International, Materials Park OH, ABD, 2016.
  • Maxweel I. ve Hellawell A., Simple model for grain refinement during solidification, Acta Metall., 23 (2), 229-237, 1975.
  • Chen Z., Wang T., Gao L., Fu H. ve Li. T., Grain refinement and tensile properties improvement of aluminum foundry alloys by inoculation with Al–B master alloy, Mater. Sci. Eng., A, 553, 32– 36, 2012.
  • Chen Z., Kang H., Fan G., Li J., Lu Y., Jie J., Zhang Y., Li T., Jian X. ve Wang T., Grain refinement of hypoeutectic Al-Si alloys with B, Acta Metall., 120, 168-178, 2016.
  • Johnsson M.ve Backerud L., The influence of composition on equiaxed crystal growth mechanisms and grain size in Al alloys, Zeitschrift für Metallkunde, 87, 216-220, 1996.
  • Spittle J.A ve Sadli S., Effect of alloy variables on grain refinement of binary aluminum-alloys with Al-Ti-B, Mater. Sci. Technol., 11, 533-537, 1995.
  • Dieter G.E., Mechanical Metallurgy, McGraw-Hill Book Company, New York, USA, 1976.
  • Turhal M.Ş. ve Savaşkan T., Relationships between secondary dendrite arm spacing and mechanical properties of Zn-40Al-Cu alloys, J. Mater. Sci., 38 (12), 2639-2646, 2013.
  • Çolak M. ve Kayıkçı R., Alüminyum dökümlerinde tane inceltme, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (1), 11-17, 2009.
  • Alipour M., Azarbarmas M., Heydari F., Hoghoughi M., Alidoost M. ve Emamy M., The effect of Al–8B grain refiner and heat treatment conditions on the microstructure, mechanical properties and dry sliding wear behavior of an Al–12Zn–3Mg–2.5Cu aluminum alloy, Mater. Des., 38, 64–73, 2012.
  • Savaşkan T., Malzeme Bilimi ve Malzeme Muayenesi, 8. Baskı, Papatya Bilim, İstanbul, 2017.
  • Üneri S., Korozyon ve Önlenmesi, 3. Baskı, Korozyon Derneği, Ankara, 2011.

Effect of grain refinement with titanium on the microstructure, mechanical and corrosion properties of Al-25Zn alloy

Yıl 2020, , 311 - 322, 25.10.2019
https://doi.org/10.17341/gazimmfd.464676

Öz

In this study, one binary Al-25n alloys and eleven
ternary aluminum-zinc-titanium alloys, Al-25Zn-0.01Ti, Al-25Zn-0.03Ti,
Al-25Zn-0.04Ti, Al-25Zn-0.05Ti, Al-25Zn-0.075Ti, Al-25Zn-0.1Ti, Al-25Zn-0.2Ti,
Al-25Zn-0.4Ti, Al-25Zn-0.6Ti, Al-25Zn-0.8 and Al-25Zn-1Ti, were produced by
permanent mold casting method. Structural, mechanical, and corrosion properties
of the tested alloys were investigated. Structural investigations were carried
out with scanning electron microscope (SEM) and X-ray diffraction (XRD)
studies. Mechanical properties of the alloys were determined with the Brinell
hardness and tensile tests. Corrosion tests were carried out with
electrochemical test setup in accordance with ASTM G5 standard. Al-25Zn and
Al-25Zn-Ti alloys were composed of α and η phases as the main matrix, and it
was observed that Al3Ti phase began to precipitate in the microstructure
when the titanium content exceeded 0.01%. In addition, the size of dendrites or
grains of the Al-25Zn-Ti alloys was found to be much smaller than that of
binary alloy.
The hardness, yield strength, and tensile strength
values of the Al-25Zn alloy significantly increased with the 0.01%Ti addition,
but when Ti content exceeded 0.01%, these values decreased with increasing
titanium content. It was observed that titanium addition had a negative effect
on the corrosion properties of the Al-25Zn alloy. The change on the mechanical
and corrosion properties of the Al-25Zn alloy due to the titanium addition in
different ratios have been explained based on the structural properties of the
alloys.



 

Kaynakça

  • Goodwin F.E. ve Ponikvar A.L., Engineering Properties of Zinc Alloys, Cilt 3, International Lead Zinc Research Organization, Research Triangle Park, NC, USA, 1989.
  • Philip P.E. ve Schweitzer A., Metallic Materials: Physical, Mechanical, and Corrosion Properties, Cilt 1, Marcel Dekker Inc., USA, 2003.
  • Savaşkan T. ve Hekimoğlu A.P., Microstructure and mechanical properties of Zn–15Al-based ternary and quaternary alloys, Mater. Sci. Eng., A, 603, 52–57, 2014.
  • Savaşkan T. ve Alemdağ Y., Effects of pressure and sliding speed on the friction and wear properties of Al-40Zn-3Cu-2Si alloy: A comparative study with SAE 65 bronze, Mater. Sci. Eng., A, 496 (1-2), 517-523, 2008.
  • Savaşkan T. ve Hekimoğlu, A.P., Lubricated wear characteristics of Zn-15Al-3Cu-1Si alloy and SAE 660 bronze, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 145-154, 2018.
  • Prasad B.K., Sliding wear response of a zinc-based alloy and its composite and comparison with a gray cast iron: influence of exeternal lubrication and microstructural features, Mater. Sci. Eng., A, 392, 427-439, 2005.
  • Lyon R., The properties and applications of ZA alloys, The British Foundryman, August/ September, 344-349, 1986.
  • Savaşkan T. ve Hekimoğlu A.P., Effects of contact pressure and sliding speed on the unlubricated friction and wear properties of Zn-15Al-3Cu-1Si alloy, Tribol. Trans., 59 (6), 1114-1121, 2016.
  • Gervais E., Levert H. ve Bess M., The development of a family of zinc-based foundry alloys, American Foundrymen’s Society Transaction, 88 , 183-194, 1980.
  • Delneuville P., Tribological behaviour of Zn-Al alloys (ZA27) compared with bronze when used as a bearing material with high load and very low speed, Wear, 105, 283-292, 1985.
  • Savaşkan T. ve Hekimoğlu A.P., Effect of quench-ageing treatment on the microstructure and properties of Zn-15Al-3Cu alloy, , Int. J. Mater. Res.,, 106 (5), 481-487, 2015.
  • Savaşkan T. ve Hekimoğlu A.P., Microstructure and mechanical properties of Zn-15Al-based ternary and quaternary alloys, Mater. Sci. Eng., A, 603, 52-57, 2014.
  • Savaşkan T. ve Hekimoğlu A.P., Structure and mechanical properties of Zn-(5-25) Al alloys, Int. J. Mater. Res., 105 (11), 1084-1089, 2014.
  • Savaşkan T., Bican O. ve Alemdag Y., Developing aluminium–zinc-based a new alloy for tribological applications, J. Mater. Sci., 44 (8), 1969–1976, 2009.
  • Türk A., Durman M. ve Kayalı E.S., The effect of manganase on the microstructure and mechanical properties of zinc-aluminium based ZA-8 alloy, J. Mater. Sci., 42, 8298-8305, 2007.
  • Savaşkan T. ve Bican O., Effects of silicon content on the microstructural features and mechanical and sliding wear properties of Zn-40Al-2Cu-(0-5)Si alloys, Mater. Sci. Eng., A, 404, 259-269, 2005.
  • Prasad B.K., Effects of silicon addition and test parameters on sliding wear characteristics of zinc-based alloy containing 37,5% aluminium, Materials Transactions, 38 (8), 701-706, 1997.
  • Savaşkan T., Hekimoğlu, A.P. ve Pürçek, G., Effect of copper content on the mechanical and sliding wear properties of monotectoid-based zinc-aluminium-copper alloys, Tribol. Int., 37, 45-50, 2004.
  • Savaşkan T., Pürçek G. ve Hekimoğlu A.P., Effect of copper content on the mechanical and tribological properties of ZnAl27-based alloys, Tribol. Lett., 15 (3), 257-263, 2003.
  • Türk A., Durman M. ve Kayali E.S., The effect of manganese on the microstructure and mechanical properties of zinc–aluminium based ZA-8 alloy, J. Mater. Sci., 42 (19), 8298–8305, 2007.
  • Savaşkan T. ve Alemdağ Y., Effect of nickel additions on the mechanical and sliding wear properties of Al-40Zn-3Cu alloy, Wear, 268, 565-570, 2010.
  • Chemingui M., Khitouni M., Mesmacque G. ve Kolsi A.W., Effect of heat treatment on plasticity of Al–Zn–Mg alloy: microstructure evolution and mechanical properties, Physics Procedia, 2 (3), 1167–1174, 2009.
  • Shin S.S., Yeom G.Y., Kwak T.Y. ve Park I.M., Microstructure and mechanical properties of TiB-containing Al–Zn binary alloys, J. Mater. Sci. Technol., 32 (7), 653–659, 2016.
  • Hekimoğlu, A.P., Turan T.E., İsmailoğlu İ.İ., Akyol M.E. ve Şen E., Effect of grain refinement with boron on the microstructure and mechanical properties of Al-30Zn alloy, Journal of the Faculty of Engineering and Architecture of Gazi University, 18 (1), 2018.
  • Krajewski W.K., Greer A.L., Krajewski P.K. ve Piwowarski G., Grain refinement of zinc-aluminium based foundry alloys, 71st World Foundry Congress, Bilbao-Spain, 1286-1297, 19-21 Mayıs, 2014.
  • Krajewski W.K., Schumacher, P. ve Haberl K., Microstructural features of the grain-refined sand cast AlZn20 alloy, Arch. Metall. Mater., 55 (3), 2010.
  • Mikuszewski T. ve Michalik R., The influence of molding parameters on the structure of the ZnAl40Cu2Ti alloy, Solid State Phenomena, 246, 235-239, 2016.
  • Krajewski W.K. ve Haberl K., The effect of Ti on high-zinc al cast alloys structure and properties, Acta Metallurgica Slovaca, 17 (2), 123-128, 2011.
  • Buraś J., Szucki M., Piwowarski G., Krajewski W.K. ve Krajewski P.K., Strength properties examination of high zinc aluminium alloys inoculated with Ti addition, China Foundry, 14 (3), 211–215, 2017.
  • Krajewski W., The effect of Ti addition on properties of selected Zn–Al alloys, Phys. Status Solidi A, 147 (2), 389–399, 1995.
  • Presnyakov A.A., Gorban Y.A. ve Chrevyakova V.V., The aluminum-zinc phase diagram, Russ. J. Phys. Chem., 35 (6), 632-633, 1961.
  • Okamoto H., Schlesinger M.E. ve Mueller M.E., ASM Handbook Volume 3: Alloy Phase Diagrams, ASM International, Materials Park OH, ABD, 2016.
  • Maxweel I. ve Hellawell A., Simple model for grain refinement during solidification, Acta Metall., 23 (2), 229-237, 1975.
  • Chen Z., Wang T., Gao L., Fu H. ve Li. T., Grain refinement and tensile properties improvement of aluminum foundry alloys by inoculation with Al–B master alloy, Mater. Sci. Eng., A, 553, 32– 36, 2012.
  • Chen Z., Kang H., Fan G., Li J., Lu Y., Jie J., Zhang Y., Li T., Jian X. ve Wang T., Grain refinement of hypoeutectic Al-Si alloys with B, Acta Metall., 120, 168-178, 2016.
  • Johnsson M.ve Backerud L., The influence of composition on equiaxed crystal growth mechanisms and grain size in Al alloys, Zeitschrift für Metallkunde, 87, 216-220, 1996.
  • Spittle J.A ve Sadli S., Effect of alloy variables on grain refinement of binary aluminum-alloys with Al-Ti-B, Mater. Sci. Technol., 11, 533-537, 1995.
  • Dieter G.E., Mechanical Metallurgy, McGraw-Hill Book Company, New York, USA, 1976.
  • Turhal M.Ş. ve Savaşkan T., Relationships between secondary dendrite arm spacing and mechanical properties of Zn-40Al-Cu alloys, J. Mater. Sci., 38 (12), 2639-2646, 2013.
  • Çolak M. ve Kayıkçı R., Alüminyum dökümlerinde tane inceltme, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13 (1), 11-17, 2009.
  • Alipour M., Azarbarmas M., Heydari F., Hoghoughi M., Alidoost M. ve Emamy M., The effect of Al–8B grain refiner and heat treatment conditions on the microstructure, mechanical properties and dry sliding wear behavior of an Al–12Zn–3Mg–2.5Cu aluminum alloy, Mater. Des., 38, 64–73, 2012.
  • Savaşkan T., Malzeme Bilimi ve Malzeme Muayenesi, 8. Baskı, Papatya Bilim, İstanbul, 2017.
  • Üneri S., Korozyon ve Önlenmesi, 3. Baskı, Korozyon Derneği, Ankara, 2011.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ali Paşa Hekimoğlu 0000-0003-2396-4876

Merve Çalış 0000-0001-8658-3021

Yayımlanma Tarihi 25 Ekim 2019
Gönderilme Tarihi 27 Eylül 2018
Kabul Tarihi 24 Nisan 2019
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Hekimoğlu, A. P., & Çalış, M. (2019). Titanyum ile tane inceltmenin Al-25Zn alaşımının mikroyapı, mekanik ve korozyon özelliklerine etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 311-322. https://doi.org/10.17341/gazimmfd.464676
AMA Hekimoğlu AP, Çalış M. Titanyum ile tane inceltmenin Al-25Zn alaşımının mikroyapı, mekanik ve korozyon özelliklerine etkisinin incelenmesi. GUMMFD. Ekim 2019;35(1):311-322. doi:10.17341/gazimmfd.464676
Chicago Hekimoğlu, Ali Paşa, ve Merve Çalış. “Titanyum Ile Tane Inceltmenin Al-25Zn alaşımının mikroyapı, Mekanik Ve Korozyon özelliklerine Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 1 (Ekim 2019): 311-22. https://doi.org/10.17341/gazimmfd.464676.
EndNote Hekimoğlu AP, Çalış M (01 Ekim 2019) Titanyum ile tane inceltmenin Al-25Zn alaşımının mikroyapı, mekanik ve korozyon özelliklerine etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 1 311–322.
IEEE A. P. Hekimoğlu ve M. Çalış, “Titanyum ile tane inceltmenin Al-25Zn alaşımının mikroyapı, mekanik ve korozyon özelliklerine etkisinin incelenmesi”, GUMMFD, c. 35, sy. 1, ss. 311–322, 2019, doi: 10.17341/gazimmfd.464676.
ISNAD Hekimoğlu, Ali Paşa - Çalış, Merve. “Titanyum Ile Tane Inceltmenin Al-25Zn alaşımının mikroyapı, Mekanik Ve Korozyon özelliklerine Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/1 (Ekim 2019), 311-322. https://doi.org/10.17341/gazimmfd.464676.
JAMA Hekimoğlu AP, Çalış M. Titanyum ile tane inceltmenin Al-25Zn alaşımının mikroyapı, mekanik ve korozyon özelliklerine etkisinin incelenmesi. GUMMFD. 2019;35:311–322.
MLA Hekimoğlu, Ali Paşa ve Merve Çalış. “Titanyum Ile Tane Inceltmenin Al-25Zn alaşımının mikroyapı, Mekanik Ve Korozyon özelliklerine Etkisinin Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 1, 2019, ss. 311-22, doi:10.17341/gazimmfd.464676.
Vancouver Hekimoğlu AP, Çalış M. Titanyum ile tane inceltmenin Al-25Zn alaşımının mikroyapı, mekanik ve korozyon özelliklerine etkisinin incelenmesi. GUMMFD. 2019;35(1):311-22.

Cited By