Araştırma Makalesi
BibTex RIS Kaynak Göster

[(1H-1,2,4-triazol-3-ylimin)metil]naftalen-2-ol modifiye platin elektrodu ile askorbik asit ve dopamin varlığında ürik asit tayini

Yıl 2020, , 2013 - 2022, 21.07.2020
https://doi.org/10.17341/gazimmfd.525552

Öz

Bu
çalışmada, bir triazole türevi olan [(1H-1,2,4-triazol-3-ylimin)metil]naftalen-2-ol
(TMN-2-ol) Schiff bazı ile platin (Pt) elektrot yüzeyi kaplanarak; TMN-2-ol/Pt
elektrodu hazırlanmıştır. Kaplama işlemi, dönüşümlü voltametri (CV) yöntemi
kullanılarak
1´10-3 M TMN-2-ol çözeltisi içerisinde, 100
mV s-1 tarama hızıyla
-0,8 V ile +2,0 V arasında, 40
çevrim sayısı ile

gerçekleştirilmiştir. Hazırlanan modifiye yüzey, CV, temas açısı (CAM) ve
yansıtmalı absorpsiyon infrared spektroskopisi (RAIRS) yöntemleri kullanılarak
karakterize edilmiştir.
Hazırlanan ve karakterize edilen
elektrodun askorbik asit (AA) ve dopamin (DA) varlığında ürik aside (ÜA)
elektrokatalitik duyarlılığı, kare dalga voltametrisi (SWV) yöntemiyle incelenmiştir.
Destek elektrolit, pH
gibi optimum çalışma şartları belirlenmiştir. En uygun çalışma ortamı 0,1 M pH
7,2 fosfat tamponu (PBS) olarak bulunmuştur. TMN-2-ol/Pt elektrot ile ÜA için çalışma
aralığı
1,23´10-6–1,51´10-5
M ve
gözlenebilme
sınırı (LOD) 1,56
´10-8
M olarak belirlenmiştir. ÜA pik akımı üzerine çeşitli anyon ve
katyonların girişim etkileri incelenmiştir.
Modifiye elektrotla,
insan kan serumunda standart ekleme yöntemi kullanarak düşük bağıl standart
sapma değerleri ile ÜA analizi gerçekleştirilmiştir. 

Kaynakça

  • Abellán-Llobregat A., Ayán-Varela M., Vidal L., Paredes J. I., Villar-Rodil S., Canals A., Morallón E., Flavin mononucleotide-exfoliated graphene flakes as electrodes for the electrochemical determination of uric acid in the presence of ascorbic acid, Journal of Electroanalytical Chemistry, 783, 41–48, 2016.
  • Choukairi M., Bouchta D., Bounab L., Benatyah M., Elkhamlichi R., Chaouket F., Raissouni I., Rodriguez I. N., Electrochemical detection of uric acid and ascorbic acid: Application in serum, Journal of Electroanalytical Chemistry, 758, 117–124, 2015.
  • Jiang J., Du X., Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites, Nanoscale, 6 (19), 11303–11309, 2014.
  • Zhang X., Chen X., Kai S., Wang H. Y., Yang J., Wu F. G., Chen Z., Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminiscent silicon nanoparticles. Analytical Chemistry, 87 (6), 3360–3365, 2015.
  • Zhang W., Liu L., Li Y., Wang D., Ma H., Ren H., Shi Y., Han Y., Ye B.-C., Electrochemical sensing platform based on the biomass-derived microporous carbons for simultaneous determination of ascorbic acid, dopamine, and uric acid, Biosensors and Bioelectronics, 121, 96–103, 2018.
  • Mohibul Islam K. Md., Haque Al-M. J., Kim K., Electrochemical determination of uric acid in the presence of ascorbic acid on electrochemically reduced graphene oxide modified electrode, Journal of Electroanalytical Chemistry, 700, 54–59, 2013.
  • Tatli F., Uzun D., Calam T.T., Gündüzalp A.B., Hasdemir E., Preparation and characterization of 3‐[(1H‐1,2,4‐triazole‐3‐ylimino)methyl]naphtalene‐2‐ol film at the platinum surface for selective voltammetric determination of dopamine in the presence of uric acid and ascorbic acid, Surface and Interface Analysis, 1–9, 2018.
  • Lei R., Ni H., Chen R., Gu H., Zhang B., Electrochemical analysis of ascorbic acid and uric acid on defect-engineered carbon nanotube networks with increased exposure of graphitic edge planes, Electrochemistry Communications, 93, 20–24, 2018.
  • Motshakeri M., Travas-Sejdic J., Phillips A. R. J., Kilmartin P. A., Rapid electroanalysis of uric acid and ascorbic acid using a poly(3,4- ethylenedioxythiophene)-modified sensor with application to milk, Electrochimica Acta, 265, 184–193, 2018.
  • Rohani T., Taher M. A., Novel functionalized multiwalled carbon nanotube-glassy carbon electrode for simultaneous determination of ascorbic acid and uric acid, Arabian Journal of Chemistry, 11, 214–220, 2018.
  • Gorczyński A., Pakulski D., Szymańsk M., Kubicki M., Bułat K., Łuczak T., Patroniak V., Electrochemical deposition of the new manganese(II) Schiff-base complex on a gold template and its application for dopamine sensing in the presence of interfering biogenic compounds, Talanta 149, 347–355, 2016.
  • Zhang S., Xu Z., Gao C., Ren Q.-C., Chang L., Lv Z.-S., Feng L.-S., Triazole derivatives and their anti-tubercular activity, European Journal of Medicinal Chemistry, 138, 501–513, 2017.
  • Raj C. R., Ohsaka T., Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol, Journal of Electroanalytical Chemistry, 540, 69–77, 2003.
  • Ye J.-S., Wen Y., Zhang W. D., Gan M., Xu Q., Sheu F.-S., Selective Voltammetric Detection of Uric Acid in the Presence of Ascorbic Acid at Well-Aligned Carbon Nanotube Electrode, Electroanalysis, 15 (21), 1693–1698, 2003.
  • Uzun D., Gündüzalp A.B., Hasdemir E., Selective determination of dopamine in the presence of uric acid and ascorbic acid by N,N0 -bis(indole-3-carboxaldimine)-1,2- diaminocyclohexane thin film modified glassy carbon electrode by differential pulse voltammetry, Journal of Electroanalytical Chemistry, 747, 68–76 2015.
  • Veera Manohara Reddy Y., Sravani B., Agarwal S., Kumar Gupta V., Madhavi G., Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode, Journal of Electroanalytical Chemistry, 820, 168–175, 2018.
  • Veera Manohara Reddy Y., Sravani B., Agarwal S., Kumar Gupta V., Madhavi G., Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode, Journal of Electroanalytical Chemistry, 820, 168–175, 2018.
  • Wei M., Sun L.G., Xie Z.Y., Zhii J.F., Fujishima A., Einaga Y., Fu D.G., Wang X.M., Gu Z.Z., Selective determination of dopamine on a boron-doped diamond electrode modified with gold nanoparticle/polyelectrolyte-coated polystyrene colloids, Advanced Functional Materials, 18, 1414–1421, 2008.
  • Hu G., Liu Y., Zhao J., Cui S., Yang Z., Zhang Y., Selective response of dopamine in the presence of ascorbic acid on L-cysteine self-assembled gold electrode, Bioelectrochemistry, 69, 254–257, 2006.
  • Wang Y., Li Y., Tang L., Lu J., Li J., Application of graphene-modified electrode for selective detection of dopamine, Electrochemistry Communications, 11, 889–892, 2009.
  • Asan G., Çelikkan H., Askorbik asitin MoS2 esaslı elektrotla elektrokimyasal tayini, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 617–625, 2017.
  • Danyıldız Z., Uzun D., Tabanlıgil Calam T., Hasdemir E., A voltammetric sensor based on glassy carbon electrode modified with 1H-1,2,4-triazole-3-thiol coating for rapid determination of trace lead ions in acetate buffer solution, Journal of Electroanalytical Chemistry., 805, 177–183, 2017.
  • Sherif E.-S. M., El Shamya A.M., Ramla M.M., El Nazhawy A.O.H., 5-(Phenyl)-4H-1,2,4-triazole-3-thiol as a corrosion inhibitor for copper in 3.5% NaCl solutions, Materials Chemistry and Physics, 102, 231–239, 2007.
  • Issa R.M., Gaber M., Al-Wakiel N. Abd-E., Fathalla S. K., Synthesis, Spectral, Thermal and Biological Studies of Mn(II), Co(II), Ni(II) and Cu(II) Complexes with 1-(((5-Mercapto-1H-1,2,4-triazol-3-yl)imino)-methyl)naphthalene-2-ol, Chinese Journal of Chemistry, 30, 547–556, 2012.
  • Komrovsky F., Sperandeo N.R., Mariano D., Vera A., Caira M.R., Mazzieri M.R., X-ray, DFT, FTIR and thermal study of the antimicrobial N-benzenesulfonyl-1H-1,2,3-benzotriazole, Journal of Molecular Structure, 1164, 200–208, 2018.
  • Uzun D., Arslan H., Gündüzalp A.B., Preparation of modified glassy carbon surface with N- ( 1-H-indole-3yl ) methylene thiazole-2-amine and its characterization, Surface & Coatings Technology, 239, 108–115, 2014.
  • Calam T.T., Hasdemir E., Application of 1,6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe(II) using square wave voltammetry, Gazi University Journal of Science, 31 (1), 53–64, 2018.
  • Lee M.S. LC / MS Applications in Drug, Method Validation in Pharmaceutical Analysis, Editör: Ermer J., Miller J.H.McB., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005.
  • Du J., Yue R., Ren F., Yao Z., Jiang F., Yang P., Du Y., Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid, Biosensors and Bioelectronics, 53, 220–224, 2014.
  • Xiao C., Chu X., Yang Y., Li X., Zhang X., Chen J., Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine, Biosensors and Bioelectronics, 26 (6), 2934–2939, 2011.
  • Wang C., Yuan R., Chai Y., Chen S., Hu F., Zhang M., Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode, Analytica Chimica Acta, 741, 15–20, 2012.
  • B. Zhang, Huang D., Xu X., Alemu G., Zhang Y., Zhan F., Shen Y., Wang M., Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid with helical carbon nanotubes, Electrochimica Acta, 91, 261–266, 2013.
  • Zheng X., Zhou X., Ji X., Lin R., Lin W., Chemical Simultaneous determination of ascorbic acid , dopamine and uric acid using poly ( 4-aminobutyric acid ) modified glassy carbon electrode, Sensors and Actuators B, 178, 359–365, 2013.
  • Lin X., Kang G., Lu L., DNA/Poly ( p -aminobenzensulfonic acid ) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid, 70, 235–244, 2007.

The determination of uric acid in the presence of ascorbic acid and dopamine using [(1H1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol modified platinum electrode

Yıl 2020, , 2013 - 2022, 21.07.2020
https://doi.org/10.17341/gazimmfd.525552

Öz

In this study [(1H-1,2,4-triazole-3-ylimino) methyl]naphtalene-2-ol (TMN-2-ol) was deposited at the platin electrode to fabricate a new sensor and used for the determination of uric acid in the presence of ascorbic acid (AA) and dopamine (DA) Electrocatalytic activity against uric acid (UA) was determined using modified electrode. Comparing with the bare Pt and TMN-2-ol modified Pt (TMN-2-ol/Pt) electrode, the TMN-2-ol /Pt electrode has higher catalytic activities towards the oxidation of UA in the presence of AA and DA. Figure A shows that electrode modification provided 5.54-fold increase at the precision.

Kaynakça

  • Abellán-Llobregat A., Ayán-Varela M., Vidal L., Paredes J. I., Villar-Rodil S., Canals A., Morallón E., Flavin mononucleotide-exfoliated graphene flakes as electrodes for the electrochemical determination of uric acid in the presence of ascorbic acid, Journal of Electroanalytical Chemistry, 783, 41–48, 2016.
  • Choukairi M., Bouchta D., Bounab L., Benatyah M., Elkhamlichi R., Chaouket F., Raissouni I., Rodriguez I. N., Electrochemical detection of uric acid and ascorbic acid: Application in serum, Journal of Electroanalytical Chemistry, 758, 117–124, 2015.
  • Jiang J., Du X., Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites, Nanoscale, 6 (19), 11303–11309, 2014.
  • Zhang X., Chen X., Kai S., Wang H. Y., Yang J., Wu F. G., Chen Z., Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminiscent silicon nanoparticles. Analytical Chemistry, 87 (6), 3360–3365, 2015.
  • Zhang W., Liu L., Li Y., Wang D., Ma H., Ren H., Shi Y., Han Y., Ye B.-C., Electrochemical sensing platform based on the biomass-derived microporous carbons for simultaneous determination of ascorbic acid, dopamine, and uric acid, Biosensors and Bioelectronics, 121, 96–103, 2018.
  • Mohibul Islam K. Md., Haque Al-M. J., Kim K., Electrochemical determination of uric acid in the presence of ascorbic acid on electrochemically reduced graphene oxide modified electrode, Journal of Electroanalytical Chemistry, 700, 54–59, 2013.
  • Tatli F., Uzun D., Calam T.T., Gündüzalp A.B., Hasdemir E., Preparation and characterization of 3‐[(1H‐1,2,4‐triazole‐3‐ylimino)methyl]naphtalene‐2‐ol film at the platinum surface for selective voltammetric determination of dopamine in the presence of uric acid and ascorbic acid, Surface and Interface Analysis, 1–9, 2018.
  • Lei R., Ni H., Chen R., Gu H., Zhang B., Electrochemical analysis of ascorbic acid and uric acid on defect-engineered carbon nanotube networks with increased exposure of graphitic edge planes, Electrochemistry Communications, 93, 20–24, 2018.
  • Motshakeri M., Travas-Sejdic J., Phillips A. R. J., Kilmartin P. A., Rapid electroanalysis of uric acid and ascorbic acid using a poly(3,4- ethylenedioxythiophene)-modified sensor with application to milk, Electrochimica Acta, 265, 184–193, 2018.
  • Rohani T., Taher M. A., Novel functionalized multiwalled carbon nanotube-glassy carbon electrode for simultaneous determination of ascorbic acid and uric acid, Arabian Journal of Chemistry, 11, 214–220, 2018.
  • Gorczyński A., Pakulski D., Szymańsk M., Kubicki M., Bułat K., Łuczak T., Patroniak V., Electrochemical deposition of the new manganese(II) Schiff-base complex on a gold template and its application for dopamine sensing in the presence of interfering biogenic compounds, Talanta 149, 347–355, 2016.
  • Zhang S., Xu Z., Gao C., Ren Q.-C., Chang L., Lv Z.-S., Feng L.-S., Triazole derivatives and their anti-tubercular activity, European Journal of Medicinal Chemistry, 138, 501–513, 2017.
  • Raj C. R., Ohsaka T., Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol, Journal of Electroanalytical Chemistry, 540, 69–77, 2003.
  • Ye J.-S., Wen Y., Zhang W. D., Gan M., Xu Q., Sheu F.-S., Selective Voltammetric Detection of Uric Acid in the Presence of Ascorbic Acid at Well-Aligned Carbon Nanotube Electrode, Electroanalysis, 15 (21), 1693–1698, 2003.
  • Uzun D., Gündüzalp A.B., Hasdemir E., Selective determination of dopamine in the presence of uric acid and ascorbic acid by N,N0 -bis(indole-3-carboxaldimine)-1,2- diaminocyclohexane thin film modified glassy carbon electrode by differential pulse voltammetry, Journal of Electroanalytical Chemistry, 747, 68–76 2015.
  • Veera Manohara Reddy Y., Sravani B., Agarwal S., Kumar Gupta V., Madhavi G., Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode, Journal of Electroanalytical Chemistry, 820, 168–175, 2018.
  • Veera Manohara Reddy Y., Sravani B., Agarwal S., Kumar Gupta V., Madhavi G., Electrochemical sensor for detection of uric acid in the presence of ascorbic acid and dopamine using the poly(DPA)/SiO2@Fe3O4 modified carbon paste electrode, Journal of Electroanalytical Chemistry, 820, 168–175, 2018.
  • Wei M., Sun L.G., Xie Z.Y., Zhii J.F., Fujishima A., Einaga Y., Fu D.G., Wang X.M., Gu Z.Z., Selective determination of dopamine on a boron-doped diamond electrode modified with gold nanoparticle/polyelectrolyte-coated polystyrene colloids, Advanced Functional Materials, 18, 1414–1421, 2008.
  • Hu G., Liu Y., Zhao J., Cui S., Yang Z., Zhang Y., Selective response of dopamine in the presence of ascorbic acid on L-cysteine self-assembled gold electrode, Bioelectrochemistry, 69, 254–257, 2006.
  • Wang Y., Li Y., Tang L., Lu J., Li J., Application of graphene-modified electrode for selective detection of dopamine, Electrochemistry Communications, 11, 889–892, 2009.
  • Asan G., Çelikkan H., Askorbik asitin MoS2 esaslı elektrotla elektrokimyasal tayini, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 617–625, 2017.
  • Danyıldız Z., Uzun D., Tabanlıgil Calam T., Hasdemir E., A voltammetric sensor based on glassy carbon electrode modified with 1H-1,2,4-triazole-3-thiol coating for rapid determination of trace lead ions in acetate buffer solution, Journal of Electroanalytical Chemistry., 805, 177–183, 2017.
  • Sherif E.-S. M., El Shamya A.M., Ramla M.M., El Nazhawy A.O.H., 5-(Phenyl)-4H-1,2,4-triazole-3-thiol as a corrosion inhibitor for copper in 3.5% NaCl solutions, Materials Chemistry and Physics, 102, 231–239, 2007.
  • Issa R.M., Gaber M., Al-Wakiel N. Abd-E., Fathalla S. K., Synthesis, Spectral, Thermal and Biological Studies of Mn(II), Co(II), Ni(II) and Cu(II) Complexes with 1-(((5-Mercapto-1H-1,2,4-triazol-3-yl)imino)-methyl)naphthalene-2-ol, Chinese Journal of Chemistry, 30, 547–556, 2012.
  • Komrovsky F., Sperandeo N.R., Mariano D., Vera A., Caira M.R., Mazzieri M.R., X-ray, DFT, FTIR and thermal study of the antimicrobial N-benzenesulfonyl-1H-1,2,3-benzotriazole, Journal of Molecular Structure, 1164, 200–208, 2018.
  • Uzun D., Arslan H., Gündüzalp A.B., Preparation of modified glassy carbon surface with N- ( 1-H-indole-3yl ) methylene thiazole-2-amine and its characterization, Surface & Coatings Technology, 239, 108–115, 2014.
  • Calam T.T., Hasdemir E., Application of 1,6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe(II) using square wave voltammetry, Gazi University Journal of Science, 31 (1), 53–64, 2018.
  • Lee M.S. LC / MS Applications in Drug, Method Validation in Pharmaceutical Analysis, Editör: Ermer J., Miller J.H.McB., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005.
  • Du J., Yue R., Ren F., Yao Z., Jiang F., Yang P., Du Y., Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid, Biosensors and Bioelectronics, 53, 220–224, 2014.
  • Xiao C., Chu X., Yang Y., Li X., Zhang X., Chen J., Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine, Biosensors and Bioelectronics, 26 (6), 2934–2939, 2011.
  • Wang C., Yuan R., Chai Y., Chen S., Hu F., Zhang M., Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode, Analytica Chimica Acta, 741, 15–20, 2012.
  • B. Zhang, Huang D., Xu X., Alemu G., Zhang Y., Zhan F., Shen Y., Wang M., Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid with helical carbon nanotubes, Electrochimica Acta, 91, 261–266, 2013.
  • Zheng X., Zhou X., Ji X., Lin R., Lin W., Chemical Simultaneous determination of ascorbic acid , dopamine and uric acid using poly ( 4-aminobutyric acid ) modified glassy carbon electrode, Sensors and Actuators B, 178, 359–365, 2013.
  • Lin X., Kang G., Lu L., DNA/Poly ( p -aminobenzensulfonic acid ) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid, 70, 235–244, 2007.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimarlık
Bölüm Makaleler
Yazarlar

Feyza Tatli 0000-0001-7191-7287

Tuğba Tabanligil Calam 0000-0002-3712-7713

Demet Uzun 0000-0002-7090-6516

Erdoğan Hasdemir 0000-0002-5117-7485

Yayımlanma Tarihi 21 Temmuz 2020
Gönderilme Tarihi 11 Şubat 2019
Kabul Tarihi 19 Mayıs 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Tatli, F., Tabanligil Calam, T., Uzun, D., Hasdemir, E. (2020). [(1H-1,2,4-triazol-3-ylimin)metil]naftalen-2-ol modifiye platin elektrodu ile askorbik asit ve dopamin varlığında ürik asit tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(4), 2013-2022. https://doi.org/10.17341/gazimmfd.525552
AMA Tatli F, Tabanligil Calam T, Uzun D, Hasdemir E. [(1H-1,2,4-triazol-3-ylimin)metil]naftalen-2-ol modifiye platin elektrodu ile askorbik asit ve dopamin varlığında ürik asit tayini. GUMMFD. Temmuz 2020;35(4):2013-2022. doi:10.17341/gazimmfd.525552
Chicago Tatli, Feyza, Tuğba Tabanligil Calam, Demet Uzun, ve Erdoğan Hasdemir. “[(1H-1,2,4-Triazol-3-ylimin)metil]naftalen-2-Ol Modifiye Platin Elektrodu Ile Askorbik Asit Ve Dopamin varlığında ürik Asit Tayini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 4 (Temmuz 2020): 2013-22. https://doi.org/10.17341/gazimmfd.525552.
EndNote Tatli F, Tabanligil Calam T, Uzun D, Hasdemir E (01 Temmuz 2020) [(1H-1,2,4-triazol-3-ylimin)metil]naftalen-2-ol modifiye platin elektrodu ile askorbik asit ve dopamin varlığında ürik asit tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 4 2013–2022.
IEEE F. Tatli, T. Tabanligil Calam, D. Uzun, ve E. Hasdemir, “[(1H-1,2,4-triazol-3-ylimin)metil]naftalen-2-ol modifiye platin elektrodu ile askorbik asit ve dopamin varlığında ürik asit tayini”, GUMMFD, c. 35, sy. 4, ss. 2013–2022, 2020, doi: 10.17341/gazimmfd.525552.
ISNAD Tatli, Feyza vd. “[(1H-1,2,4-Triazol-3-ylimin)metil]naftalen-2-Ol Modifiye Platin Elektrodu Ile Askorbik Asit Ve Dopamin varlığında ürik Asit Tayini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/4 (Temmuz 2020), 2013-2022. https://doi.org/10.17341/gazimmfd.525552.
JAMA Tatli F, Tabanligil Calam T, Uzun D, Hasdemir E. [(1H-1,2,4-triazol-3-ylimin)metil]naftalen-2-ol modifiye platin elektrodu ile askorbik asit ve dopamin varlığında ürik asit tayini. GUMMFD. 2020;35:2013–2022.
MLA Tatli, Feyza vd. “[(1H-1,2,4-Triazol-3-ylimin)metil]naftalen-2-Ol Modifiye Platin Elektrodu Ile Askorbik Asit Ve Dopamin varlığında ürik Asit Tayini”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 4, 2020, ss. 2013-22, doi:10.17341/gazimmfd.525552.
Vancouver Tatli F, Tabanligil Calam T, Uzun D, Hasdemir E. [(1H-1,2,4-triazol-3-ylimin)metil]naftalen-2-ol modifiye platin elektrodu ile askorbik asit ve dopamin varlığında ürik asit tayini. GUMMFD. 2020;35(4):2013-22.