Araştırma Makalesi
BibTex RIS Kaynak Göster

XLPE dielektrik malzemelerde elektrik alanının temas açısına ve damlacık şekline etkisi

Yıl 2021, , 1747 - 1760, 24.05.2021
https://doi.org/10.17341/gazimmfd.700362

Öz

Polimerik yalıtkanlar, elektrik iletim ve dağıtımında önemli bir yer tutmaktadır. Servis süresi boyunca polimerik yalıtkanların yaşlanması kaçınılmaz bir durumdur. Polimerik yalıtkanların yüzey özellikleri, servis ömürlerinin belirlenmesi ve değerlendirilmesi sürecinde aktif rol oynamaktadır. Hidrofobisite ve hidrofilisite gibi özellikler malzemelerin yüzey özelliklerinin analizinde kullanılan yöntemlerden biridir. Bu çalışma kapsamında, polimerik yalıtkanları temsilen elektrik enerjisi iletim ve dağıtımında yaygın bir şekilde kullanılan elektriksel yalıtımda önemli bir yer tutan XLPE malzemenin ıslanabilirlik özellikleri (hidrofobisite ve hidrofilisite) hakkında yorum yapmaya yönelik olarak elektrik alanı altında temas açısı ölçümleri gerçekleştirilmiştir. 3D yazıcıyla üretilen temas açısı ölçüm platformunda polimerik yalıtkan, alüminyum düzlem elektrotlar arasına yerleştirilip bir elektrik alanına maruz bırakılmıştır. Deneyler yapılırken yüksek gerilim üreteci olarak daha önceden tasarlanmış ve yapılmış 0-10kV luk bir yüksek gerilim kaynağı kullanılmıştır. Elektrik alan altındaki polimerik yalıtkan üzerine bırakılan 1,8M tuzlu su damlacığının anlık görüntüleri alınmıştır. Çalışmanın görüntü işleme kısmında ölçüm ortamından dijital mikroskop ile alınan görüntüler, MATLAB platformunda hazırlanan bir arayüz yardımıyla görüntü işleme teknikleri kullanılarak işlenmiştir. Çıktı olarak temas açıları elde edilmiştir. Elektrik alan altında XLPE yüzeylerinden elde edilen temas açıları polimerik yalıtkanların servis ömrü hakkında yorum yapabilmeye imkân sunacaktır. Polimerik yalıtkanların ıslanabilirlikleri hakkında yorum yapılırken temas açısı temelli bir yaklaşım sunulmuştur. Sonuç olarak elektrik alanı, ıslanabilirlik ve temas açısı arasındaki korelasyon gözlemlenmiştir.

Destekleyen Kurum

Çankırı Karatekin Üniversitesi Bilimsel Araştırma Projeleri Birimi (BAP)

Proje Numarası

MY0150219B04

Teşekkür

Bu çalışma, Çankırı Karatekin Üniversitesi Bilimsel Araştırma Projeleri Birimi (BAP) tarafından MY0150219B04 numaralı proje ile desteklenmiştir.

Kaynakça

  • [1] Yan Z., Liang X., Shen H., Liu Y., Preparation and basic properties of superhydrophobic silicone rubber with micro-nano hierarchical structures formed by picosecond laser-ablated template, IEEE Transactions on Dielectrics and Electrical Insulation, 24(3), 1743-1750, 2017.
  • [2] Gubanski S. M., Vlastos A. E., Wettability of naturally aged silicon and EPDM composite insulators, IEEE Transactions on Power Delivery, 5(3), 1527-1535, 1990.
  • [3] Ersoy A., Kuntman A., Polimerik yalıtkanlarda yüzey özelliklerinin temas açısı ile incelenmesi, Elektrik–Elektronik–Bilgisayar Mühendisliği Sempozyumu (ELECO2008), 107-111, 2008.
  • [4] Ahmadi-Joneidi I., Shayegani-Akmal A.A., Mohseni H., Lifetime prediction of 20 kV field-aged silicone rubber insulators via condition assessment, IEEE Transactions on Dielectrics and Electrical Insulation, 24(6), 3612-3621, 2017.
  • [5] Ali M., Hackam R., Effects of saline water and temperature on surface properties of HTV silicone rubber, IEEE Transactions on Dielectrics and Electrical Insulation, 15(5), 1368-1378, 2008.
  • [6] Sekii Y, Charge generation and electrical degradation of cross-linked polyethylene, IEEJ Transactions on Electrical and Electronic Engineering, 14(1), 4-15. 2019.
  • [7] Al-Arainy A., Malik N. H., Qureshi M. I., Al-Saati M. N., The performance of strippable and bonded screened medium-voltage XLPE-insulated cables under long-term accelerated aging, IEEE Transactions on Power Delivery, 22(2), 744-751, 2007.
  • [8] Malik N. H., Qureshi M. I., Al-Arainy A. A., Saati M. N., Al-Natheer O. A., Anam S., Performance of water tight cables produced in Saudi Arabia under accelerated aging, IEEE Transactions on Dielectrics and Electrical Insulation, 19(2), 490-497, 2012.
  • [9] Kwon J. H., Bae J. H., Lee H., Park J., Dimethyl ketone treatment of cross-linked poly (4-vinylphenol) insulators for pentacene thin-film transistors, Journal of the Korean Physical Society, 74(3), 280-285, 2019.
  • [10] Gao Y., Liang X., Bao W., Li S., Wu C., Liu Y., Cai Y., Effects of liquids immersion and drying on the surface properties of HTV silicone rubber: Part I-contact angle and surface chemical properties, IEEE Transactions on Dielectrics and Electrical Insulation, 24(6), 3594-3602, 2017.
  • [11] Xu Z., An inclined plane based dynamic contact angle algorithm and its validity in application of hydrophobicity measurement for insulating materials, IEEE Transactions on Dielectrics and Electrical Insulation, 20(5), 1832-1835, 2013.
  • [12] Han S. W., Park E. J., Jeong M. G., Kim I. H., Seo H. O., Kim J. H., Kim Y. D., Fabrication of recyclable superhydrophobic cotton fabrics, Applied Surface Science, 400, 405-412, 2017.
  • [13] He L., Ma Y., Liu Q., Mu, Y., Surface modification of crumb rubber and its influence on the mechanical properties of rubber-cement concrete, Construction and Building Materials, 120, 403-407, 2016.
  • [14] Aydar A. Y., Rodriguez-Martinez V., Farkas B. E., Determination and modeling of contact angle of Canola oil and olive oil on a PTFE surface at elevated temperatures using air or steam as surrounding media, LWT-Food Science and Technology, 65, 304-310, 2016.
  • [15] Kowalczuk P. B., Akkaya C., Ergun M., Janicki M., Sahbaz O., Drzymala J., Water contact angle on corresponding surfaces of freshly fractured fluorite, calcite and mica, Physicochemical Problems of Mineral Processing, 53, 2017.
  • [16] Evcin A., Ersoy B., Uygunoğlu T., Güneş İ., Farklı mineral katkıların epoksi zemin kaplama malzemesinin ıslanmazlığına ve yüzey enerjisine etkisi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 599-610, 2018.
  • [17] Chen S. Y., Kaufman Y., Schrader A. M., Seo D., Lee D. W., Page S. H., Israelachvili J. N., Contact angle and adhesion dynamics and hysteresis on molecularly smooth chemically homogeneous surfaces. Langmuir, 33(38), 10041-10050, 2017.
  • [18] Vancauwenberghe V., Di Marco P., Brutin D., Wetting and evaporation of a sessile drop under an external electrical field: A review, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 432, 50-56, 2013.
  • [19] Di Marco P., Pedretti F., Saccone G., Effect of an external electric field on the shape of a dielectric sessile drop, 8th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Lisbon, Portugal, 2013.
  • [20] Bateni A., Amirfazli A., Neumann A. W, Effects of an electric field on the surface tension of conducting drops, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 289(1-3), 25-38, 2006.
  • [21] Bateni A., Susnar S. S., Amirfazli A., Neumann A. W., Development of a new methodology to study drop shape and surface tension in electric fields. Langmuir, 20(18), 7589-7597, 2004.
  • [22] Bateni A., Laughton S., Tavana H., Susnar S. S., Amirfazli A., Neumann A. W., Effect of electric fields on contact angle and surface tension of drops, Journal of colloid and interface science, 283(1), 215-222, 2005.
  • [23] Gu H., Wang C., Gong S., Mei Y., Li H., Ma W., Investigation on contact angle measurement methods and wettability transition of porous surfaces, Surface and Coatings Technology, 292, 72-77, 2016.
  • [24] Neumann A. W., Good R. J., Techniques of measuring contact angles, In Surface and colloid science, , Springer, 31-91Boston, MA, 1979.
  • [25] Williams D. L., Kuhn A. T., Amann M. A., Hausinger M. B., Konarik M. M., Nesselrode E. I., Computerised measurement of contact angles, Galvanotechnik, 101(11), 2502, 2010.
  • [26] Skłodowska A., Woźniak M., Matlakowska R., The method of contact angle measurements and estimation of work of adhesion in bioleaching of metals, Biological procedures online, 1(3), 114-121, 1999.
  • [27] Lubarda V. A., Talke K. A., Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model, Langmuir, 27(17), 10705-10713, 2011.
  • [28] Kalantarian A., David R., Neumann A. W., Methodology for high accuracy contact angle measurement. Langmuir, 25(24), 14146-14154, 2009.
  • [29] Stalder A. F., Melchior T., Müller M., Sage D., Blu T., Unser M., Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364(1-3), 72-81, 2010.
  • [30] Bateni A., Susnar S. S., Amirfazli A., Neumann A. W., A high-accuracy polynomial fitting approach to determine contact angles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219(1-3), 215-231, 2003.
  • [31] Stalder A. F., Kulik G., Sage D., Barbieri L., Hoffmann P., A snake-based approach to accurate determination of both contact points and contact angles, Colloids and surfaces A: physicochemical and engineering aspects, 286(1-3), 92-103, 2006.
  • [32] Law K. Y., Zhao H., Surface wetting: characterization, contact angle, and Fundamentals, Switzerland: Springer, 2016.
  • [33] Young T., III. An essay on the cohesion of fluids, Philosophical transactions of the royal society of London, 95, 65-87, 1805.
  • [34] Adamiak K., Interaction of two dielectric or conducting droplets aligned in the uniform electric field, Journal of Electrostatics, 51, 578-584, 2001.
  • [35] Bateni A., Ababneh A., Elliott J. A. W., Neumann A. W., Amirfazli A., Effect of gravity and electric field on shape and surface tension of drops, Advances in Space Research, 36(1), 64-69, 2005.

Effect of electric field on contact angle and droplet shape in XLPE dielectric materials

Yıl 2021, , 1747 - 1760, 24.05.2021
https://doi.org/10.17341/gazimmfd.700362

Öz

Proje Numarası

MY0150219B04

Kaynakça

  • [1] Yan Z., Liang X., Shen H., Liu Y., Preparation and basic properties of superhydrophobic silicone rubber with micro-nano hierarchical structures formed by picosecond laser-ablated template, IEEE Transactions on Dielectrics and Electrical Insulation, 24(3), 1743-1750, 2017.
  • [2] Gubanski S. M., Vlastos A. E., Wettability of naturally aged silicon and EPDM composite insulators, IEEE Transactions on Power Delivery, 5(3), 1527-1535, 1990.
  • [3] Ersoy A., Kuntman A., Polimerik yalıtkanlarda yüzey özelliklerinin temas açısı ile incelenmesi, Elektrik–Elektronik–Bilgisayar Mühendisliği Sempozyumu (ELECO2008), 107-111, 2008.
  • [4] Ahmadi-Joneidi I., Shayegani-Akmal A.A., Mohseni H., Lifetime prediction of 20 kV field-aged silicone rubber insulators via condition assessment, IEEE Transactions on Dielectrics and Electrical Insulation, 24(6), 3612-3621, 2017.
  • [5] Ali M., Hackam R., Effects of saline water and temperature on surface properties of HTV silicone rubber, IEEE Transactions on Dielectrics and Electrical Insulation, 15(5), 1368-1378, 2008.
  • [6] Sekii Y, Charge generation and electrical degradation of cross-linked polyethylene, IEEJ Transactions on Electrical and Electronic Engineering, 14(1), 4-15. 2019.
  • [7] Al-Arainy A., Malik N. H., Qureshi M. I., Al-Saati M. N., The performance of strippable and bonded screened medium-voltage XLPE-insulated cables under long-term accelerated aging, IEEE Transactions on Power Delivery, 22(2), 744-751, 2007.
  • [8] Malik N. H., Qureshi M. I., Al-Arainy A. A., Saati M. N., Al-Natheer O. A., Anam S., Performance of water tight cables produced in Saudi Arabia under accelerated aging, IEEE Transactions on Dielectrics and Electrical Insulation, 19(2), 490-497, 2012.
  • [9] Kwon J. H., Bae J. H., Lee H., Park J., Dimethyl ketone treatment of cross-linked poly (4-vinylphenol) insulators for pentacene thin-film transistors, Journal of the Korean Physical Society, 74(3), 280-285, 2019.
  • [10] Gao Y., Liang X., Bao W., Li S., Wu C., Liu Y., Cai Y., Effects of liquids immersion and drying on the surface properties of HTV silicone rubber: Part I-contact angle and surface chemical properties, IEEE Transactions on Dielectrics and Electrical Insulation, 24(6), 3594-3602, 2017.
  • [11] Xu Z., An inclined plane based dynamic contact angle algorithm and its validity in application of hydrophobicity measurement for insulating materials, IEEE Transactions on Dielectrics and Electrical Insulation, 20(5), 1832-1835, 2013.
  • [12] Han S. W., Park E. J., Jeong M. G., Kim I. H., Seo H. O., Kim J. H., Kim Y. D., Fabrication of recyclable superhydrophobic cotton fabrics, Applied Surface Science, 400, 405-412, 2017.
  • [13] He L., Ma Y., Liu Q., Mu, Y., Surface modification of crumb rubber and its influence on the mechanical properties of rubber-cement concrete, Construction and Building Materials, 120, 403-407, 2016.
  • [14] Aydar A. Y., Rodriguez-Martinez V., Farkas B. E., Determination and modeling of contact angle of Canola oil and olive oil on a PTFE surface at elevated temperatures using air or steam as surrounding media, LWT-Food Science and Technology, 65, 304-310, 2016.
  • [15] Kowalczuk P. B., Akkaya C., Ergun M., Janicki M., Sahbaz O., Drzymala J., Water contact angle on corresponding surfaces of freshly fractured fluorite, calcite and mica, Physicochemical Problems of Mineral Processing, 53, 2017.
  • [16] Evcin A., Ersoy B., Uygunoğlu T., Güneş İ., Farklı mineral katkıların epoksi zemin kaplama malzemesinin ıslanmazlığına ve yüzey enerjisine etkisi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 33(2), 599-610, 2018.
  • [17] Chen S. Y., Kaufman Y., Schrader A. M., Seo D., Lee D. W., Page S. H., Israelachvili J. N., Contact angle and adhesion dynamics and hysteresis on molecularly smooth chemically homogeneous surfaces. Langmuir, 33(38), 10041-10050, 2017.
  • [18] Vancauwenberghe V., Di Marco P., Brutin D., Wetting and evaporation of a sessile drop under an external electrical field: A review, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 432, 50-56, 2013.
  • [19] Di Marco P., Pedretti F., Saccone G., Effect of an external electric field on the shape of a dielectric sessile drop, 8th World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Lisbon, Portugal, 2013.
  • [20] Bateni A., Amirfazli A., Neumann A. W, Effects of an electric field on the surface tension of conducting drops, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 289(1-3), 25-38, 2006.
  • [21] Bateni A., Susnar S. S., Amirfazli A., Neumann A. W., Development of a new methodology to study drop shape and surface tension in electric fields. Langmuir, 20(18), 7589-7597, 2004.
  • [22] Bateni A., Laughton S., Tavana H., Susnar S. S., Amirfazli A., Neumann A. W., Effect of electric fields on contact angle and surface tension of drops, Journal of colloid and interface science, 283(1), 215-222, 2005.
  • [23] Gu H., Wang C., Gong S., Mei Y., Li H., Ma W., Investigation on contact angle measurement methods and wettability transition of porous surfaces, Surface and Coatings Technology, 292, 72-77, 2016.
  • [24] Neumann A. W., Good R. J., Techniques of measuring contact angles, In Surface and colloid science, , Springer, 31-91Boston, MA, 1979.
  • [25] Williams D. L., Kuhn A. T., Amann M. A., Hausinger M. B., Konarik M. M., Nesselrode E. I., Computerised measurement of contact angles, Galvanotechnik, 101(11), 2502, 2010.
  • [26] Skłodowska A., Woźniak M., Matlakowska R., The method of contact angle measurements and estimation of work of adhesion in bioleaching of metals, Biological procedures online, 1(3), 114-121, 1999.
  • [27] Lubarda V. A., Talke K. A., Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model, Langmuir, 27(17), 10705-10713, 2011.
  • [28] Kalantarian A., David R., Neumann A. W., Methodology for high accuracy contact angle measurement. Langmuir, 25(24), 14146-14154, 2009.
  • [29] Stalder A. F., Melchior T., Müller M., Sage D., Blu T., Unser M., Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364(1-3), 72-81, 2010.
  • [30] Bateni A., Susnar S. S., Amirfazli A., Neumann A. W., A high-accuracy polynomial fitting approach to determine contact angles, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219(1-3), 215-231, 2003.
  • [31] Stalder A. F., Kulik G., Sage D., Barbieri L., Hoffmann P., A snake-based approach to accurate determination of both contact points and contact angles, Colloids and surfaces A: physicochemical and engineering aspects, 286(1-3), 92-103, 2006.
  • [32] Law K. Y., Zhao H., Surface wetting: characterization, contact angle, and Fundamentals, Switzerland: Springer, 2016.
  • [33] Young T., III. An essay on the cohesion of fluids, Philosophical transactions of the royal society of London, 95, 65-87, 1805.
  • [34] Adamiak K., Interaction of two dielectric or conducting droplets aligned in the uniform electric field, Journal of Electrostatics, 51, 578-584, 2001.
  • [35] Bateni A., Ababneh A., Elliott J. A. W., Neumann A. W., Amirfazli A., Effect of gravity and electric field on shape and surface tension of drops, Advances in Space Research, 36(1), 64-69, 2005.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Karhan 0000-0001-6747-8971

Musa Faruk Çakır 0000-0003-2406-372X

Özkan Arslan 0000-0003-1949-3688

Fatih Issı 0000-0001-6191-4525

Volkan Eyüpoğlu 0000-0001-9108-3558

Proje Numarası MY0150219B04
Yayımlanma Tarihi 24 Mayıs 2021
Gönderilme Tarihi 7 Mart 2020
Kabul Tarihi 27 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Karhan, M., Çakır, M. F., Arslan, Ö., Issı, F., vd. (2021). XLPE dielektrik malzemelerde elektrik alanının temas açısına ve damlacık şekline etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(3), 1747-1760. https://doi.org/10.17341/gazimmfd.700362
AMA Karhan M, Çakır MF, Arslan Ö, Issı F, Eyüpoğlu V. XLPE dielektrik malzemelerde elektrik alanının temas açısına ve damlacık şekline etkisi. GUMMFD. Mayıs 2021;36(3):1747-1760. doi:10.17341/gazimmfd.700362
Chicago Karhan, Mustafa, Musa Faruk Çakır, Özkan Arslan, Fatih Issı, ve Volkan Eyüpoğlu. “XLPE Dielektrik Malzemelerde Elektrik alanının Temas açısına Ve damlacık şekline Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, sy. 3 (Mayıs 2021): 1747-60. https://doi.org/10.17341/gazimmfd.700362.
EndNote Karhan M, Çakır MF, Arslan Ö, Issı F, Eyüpoğlu V (01 Mayıs 2021) XLPE dielektrik malzemelerde elektrik alanının temas açısına ve damlacık şekline etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 3 1747–1760.
IEEE M. Karhan, M. F. Çakır, Ö. Arslan, F. Issı, ve V. Eyüpoğlu, “XLPE dielektrik malzemelerde elektrik alanının temas açısına ve damlacık şekline etkisi”, GUMMFD, c. 36, sy. 3, ss. 1747–1760, 2021, doi: 10.17341/gazimmfd.700362.
ISNAD Karhan, Mustafa vd. “XLPE Dielektrik Malzemelerde Elektrik alanının Temas açısına Ve damlacık şekline Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/3 (Mayıs 2021), 1747-1760. https://doi.org/10.17341/gazimmfd.700362.
JAMA Karhan M, Çakır MF, Arslan Ö, Issı F, Eyüpoğlu V. XLPE dielektrik malzemelerde elektrik alanının temas açısına ve damlacık şekline etkisi. GUMMFD. 2021;36:1747–1760.
MLA Karhan, Mustafa vd. “XLPE Dielektrik Malzemelerde Elektrik alanının Temas açısına Ve damlacık şekline Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 36, sy. 3, 2021, ss. 1747-60, doi:10.17341/gazimmfd.700362.
Vancouver Karhan M, Çakır MF, Arslan Ö, Issı F, Eyüpoğlu V. XLPE dielektrik malzemelerde elektrik alanının temas açısına ve damlacık şekline etkisi. GUMMFD. 2021;36(3):1747-60.