Araştırma Makalesi
BibTex RIS Kaynak Göster

Meta sezgisel yöntemlerle çok seviyeli görüntü eşikleme

Yıl 2021, , 213 - 224, 01.12.2020
https://doi.org/10.17341/gazimmfd.727811

Öz

Çok seviyeli eşikleme, en çok kullanılan görüntü bölütleme yöntemlerinden birisidir. Görüntü bölütleme de kullanılan pek çok metot hesaplama karmaşıklığından dolayı çok fazla zaman tüketmektedir. Ayrıca eşik seviye sayısı arttıkça uygulama daha karmaşık ve zaman alıcı hale gelmektedir. Bu çalışmada, hesaplama zamanını azaltmak ve çok seviyeli eşikleme performansını geliştirmek için PSO yönteminin hızlı yakınsama oranı dikkate alınarak 2 boyutlu yerel olmayan histograma dayalı çok seviyeli bir eşikleme yöntemi (2DYOH-PSO) önerilmiştir. Önerilen 2DYOH-PSO yöntemi iki boyutlu Renyi’nin entropisine dayalı eşikleme yöntemi kullanılarak gerçekleştirilmiştir. Deneysel çalışmalar, Berkeley-Benchmark veri setindeki 300 görüntü için farklı seviyeli eşik değerleri dikkate alınarak yapılmıştır. Var olan 5 farklı eşik belirleme yöntemi (Diferansiyel Gelişim, Yapay Arı Algoritması, Yer Çekimi Arma Algoritması, Kbest Yer Çekimi Arma Algoritması, Kaotik Kbest Yer Çekimi Arma Algoritması) ile karşılaştırılarak, önerilen 2DYOH-PSO yönteminin performansı değerlendirilmiştir. 2DYOH-PSO yönteminin başarımı 12 farklı performans değerlendirme endeksi kullanılarak belirlenmiştir. 2DYOH-PSO ile 3 seviyeli eşikleme işlemi gerçekleştirildiği durumda, mevcut 5 farklı yöntem ile 12 performans değerlendirme indeksi bakımından yapılan bölütleme işlemlerinin başarımları BDE’de %2,63 oranında, PRI’de % 0,83 oranında SSIM’de % 15,5 oranında, RMSE’de %13,2 oranında, PSNR’de %8,63, CC’de % 35 oranında, AD’de % 13,9 oranında, MD’de 14,75 oranında, NAE %10 oranında iyileşme sağlanmıştır. 2DYOH-PSO ile 5 seviyeli eşikleme işlemi gerçekleştirildiği durumda ise Berkeley-Benchmark veri setindeki görüntülerin bölütlenmesinde ki başarımın BDE’de %1, VOI’ de %1,4, SSIM’ de %1,3, FSIM’ de %0,66, RMSE’ de%0,46, PSNR’ de %0,46, CC’ de %21,69, AD’ de %0,84 oranında iyileştiği deneysel sonuçlar ile gösterilmiştir.

Kaynakça

  • 1. Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging. 13, 146 (2004). https://doi.org/10.1117/1.1631315
  • 2. Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst., Man, Cybern. 9, 62–66 (1979). https://doi.org/10.1109/TSMC.1979.4310076
  • 3. Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing. 29, 273–285 (1985). https://doi.org/10.1016/0734-189X(85)90125-2
  • 4. Manikandan, S., Ramar, K., Willjuice Iruthayarajan, M., Srinivasagan, K.G.: Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm. Measurement. 47, 558–568 (2014). https://doi.org/10.1016/j.measurement.2013.09.031
  • 5. Agrawal, S., Panda, R., Abraham, A.: A Novel Diagonal Class Entropy-Based Multilevel Image Thresholding Using Coral Reef Optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 1–9 (2018). https://doi.org/10.1109/TSMC.2018.2859429
  • 6. Achanta, R., Estrada, F., Wils, P., Süsstrunk, S.: Salient Region Detection and Segmentation. In: Gasteratos, A., Vincze, M., and Tsotsos, J.K. (eds.) Computer Vision Systems. pp. 66–75. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)
  • 7. Xiaoli Zhaoa, Matthew Turk, Wei Li , Kuo-chin Lien, Guozhong Wang: A multilevel image thresholding segmentation algorithm based on two-dimensional K–L divergence and modified particle swarm optimization | Elsevier Enhanced Reader. Applied Soft Computing. 151–159 (2016)
  • 8. A two-dimensional multilevel thresholding method for image segmentation | Elsevier Enhanced Reader. Applied Soft Computing. 306–322 (2017).
  • 9. Pare, S., Kumar, A., Singh, G.K.: Color multilevel thresholding using gray-level co-occurrence matrix and differential evolution algorithm. In: 2017 International Conference on Communication and Signal Processing (ICCSP). pp. 0096–0100. IEEE, Chennai (2017)
  • 10. Pare, S., Kumar, A., Bajaj, V., Singh, G.K.: A context sensitive multilevel thresholding using swarm based algorithms. IEEE/CAA J. Autom. Sinica. 1–16 (2017).
  • 11. Shao, D., Xu, C., Xiang, Y., Gui, P., Zhu, X., Zhang, C., Yu, Z.: Ultrasound image segmentation with multilevel threshold based on differential search algorithm. IET Image Processing. 13, 998–1005 (2019).
  • 12. Bhandari, A.K., Singh, V.K., Kumar, A., Singh, G.K.: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Systems with Applications. 41, 3538–3560 (2014).
  • 13. Bao, X., Jia, H., Lang, C.: A Novel Hybrid Harris Hawks Optimization for Color Image Multilevel Thresholding Segmentation. IEEE Access. 7, 76529–76546 (2019).
  • 14. Jia, H., Ma, J., Song, W.: Multilevel Thresholding Segmentation for Color Image Using Modified Moth-Flame Optimization. IEEE Access. 7, 44097–44134 (2019).
  • 15. Pare, S., Bhandari, A.K., Kumar, A., Singh, G.K.: A new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithm. Computers & Electrical Engineering. 70, 476–495 (2018). https://doi.org/10.1016/j.compeleceng.2017.08.008
  • 16. Sarkar, S., Das, S.: Multilevel Image Thresholding Based on 2D Histogram and Maximum Tsallis Entropy— A Differential Evolution Approach. IEEE Transactions on Image Processing. 22, 4788–4797 (2013).
  • 17. Mittal, H., Saraswat, M.: An optimum multi-level image thresholding segmentation using non-local means 2D histogram and exponential Kbest gravitational search algorithm. Engineering Applications of Artificial Intelligence. 71, 226–235 (2018). 18. Borjigin, S., Sahoo, P.K.: Color image segmentation based on multi-level Tsallis–Havrda–Charvát entropy and 2D histogram using PSO algorithms. Pattern Recognition. 92, 107–118 (2019).
  • 19. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A Gravitational Search Algorithm - ScienceDirect. Information Sciences. 2232–2248 (2009) 20. Akay, B.: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Applied Soft Computing. 13, 3066–3091 (2013). https://doi.org/10.1016/j.asoc.2012.03.072
  • 21. Sarkar, S., Das, S., Chaudhuri, S.S.: A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution. Pattern Recognition Letters. 54, 27–35 (2015). https://doi.org/10.1016/j.patrec.2014.11.009
  • 22. Mittal, H., Pal, R., Kulhari, A., Saraswat, M.: Chaotic Kbest gravitational search algorithm (CKGSA). In: 2016 Ninth International Conference on Contemporary Computing (IC3). pp. 1–6. IEEE, Noida, India (2016)
  • 23. Liang, H., Jia, H., Xing, Z., Ma, J., Peng, X.: Modified Grasshopper Algorithm-Based Multilevel Thresholding for Color Image Segmentation. IEEE Access. 7, 11258–11295 (2019). https://doi.org/10.1109/ACCESS.2019.2891673
  • 24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. on Image Process. 13, 600–612 (2004).
  • 25. Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Transactions on Image Processing. 20, 2378–2386 (2011)
  • 26. Kaur, J., Jyoti, D.: Image Quality Assessment Techniques pn Spatial Domain. International Journal of Computer Science and Technology. 2, 177–184 (2011)
  • 27. Sathya, B.: Image Segmentation by Clustering Methods: Performance Analysis. International Journal of Computer Applications. 29, 27–32 (2011)
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yağmur Ölmez 0000-0002-1615-7390

Abdulkadir Sengur 0000-0003-1614-2639

Gonca Ozmen Koca 0000-0003-1750-8479

Yayımlanma Tarihi 1 Aralık 2020
Gönderilme Tarihi 27 Nisan 2020
Kabul Tarihi 11 Temmuz 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Ölmez, Y., Sengur, A., & Ozmen Koca, G. (2020). Meta sezgisel yöntemlerle çok seviyeli görüntü eşikleme. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(1), 213-224. https://doi.org/10.17341/gazimmfd.727811
AMA Ölmez Y, Sengur A, Ozmen Koca G. Meta sezgisel yöntemlerle çok seviyeli görüntü eşikleme. GUMMFD. Aralık 2020;36(1):213-224. doi:10.17341/gazimmfd.727811
Chicago Ölmez, Yağmur, Abdulkadir Sengur, ve Gonca Ozmen Koca. “Meta Sezgisel yöntemlerle çok Seviyeli görüntü eşikleme”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, sy. 1 (Aralık 2020): 213-24. https://doi.org/10.17341/gazimmfd.727811.
EndNote Ölmez Y, Sengur A, Ozmen Koca G (01 Aralık 2020) Meta sezgisel yöntemlerle çok seviyeli görüntü eşikleme. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 1 213–224.
IEEE Y. Ölmez, A. Sengur, ve G. Ozmen Koca, “Meta sezgisel yöntemlerle çok seviyeli görüntü eşikleme”, GUMMFD, c. 36, sy. 1, ss. 213–224, 2020, doi: 10.17341/gazimmfd.727811.
ISNAD Ölmez, Yağmur vd. “Meta Sezgisel yöntemlerle çok Seviyeli görüntü eşikleme”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/1 (Aralık 2020), 213-224. https://doi.org/10.17341/gazimmfd.727811.
JAMA Ölmez Y, Sengur A, Ozmen Koca G. Meta sezgisel yöntemlerle çok seviyeli görüntü eşikleme. GUMMFD. 2020;36:213–224.
MLA Ölmez, Yağmur vd. “Meta Sezgisel yöntemlerle çok Seviyeli görüntü eşikleme”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 36, sy. 1, 2020, ss. 213-24, doi:10.17341/gazimmfd.727811.
Vancouver Ölmez Y, Sengur A, Ozmen Koca G. Meta sezgisel yöntemlerle çok seviyeli görüntü eşikleme. GUMMFD. 2020;36(1):213-24.