Araştırma Makalesi

Geri Çekildi: Kuraklıkla mücadele eden Şanlıurfa ilinde su kullanımının planlanması: Su ayak izi analizleri

Yıl 2021, , 2135 - 2150, 02.09.2021
https://doi.org/10.17341/gazimmfd.790928
Bu makale 28 Şubat 2022 tarihinde geri çekildi. https://dergipark.org.tr/tr/pub/gazimmfd/issue/68581/1075608

Öz

Son yıllarda küresel ısınmayla, dünyanın birçok bölgesinde ciddi kuraklıklar yaşanmaktadır. Bu kuraklıklar da su kaynaklarını etkilemektedir. Bu nedenle su kaynaklarının sürdürülebilir yönetimi için literatürde birçok çalışma yapılmıştır. Su ayak izi (SA) analizleri de literatüre kazandırılmış yeni bir parametredir. Bir bölge ya da herhangi bir ürün için su ayak izi kavramı; üretim aşamaları sırasında direkt veya dolaylı olarak kullanılan veya kirletilen su miktarı demektir. Bu çalışma, kuraklığın etkili olduğu ve Türkiye’de en önemli tarım merkezlerinden biri olan Şanlıurfa ilinde detaylı SA analizleri yaparak su kullanımının planlanmasını amaçlamaktadır. Bu amaçla 2009-2019 yılları arasında 11 yılın alansal yağış ortalamaları kullanılarak, bölgede yetiştirilen 45 tarım ürününün her birinin yeşil ve mavi su ayak izi analizleri yapılmıştır. Buna ek olarak bölgede hayvancılık, evsel ve endüstriyel tüketim SA analizleri de yapılarak ilin toplam ortalama SA değeri 8,01 milyar m3/yıl bulunmuştur. İldeki su kaynaklarının %91’lik kısmının tarım ürünlerinin yetiştirilmesinde kullanıldığı belirlenmiştir. Mevcut temiz suyun %64’lük kısmı mavi su kaynaklarından karşılandığı, kurak sezonda bu oranın %66’ya kadar çıktığı belirlenmiştir. Daha rasyonel planlama yapabilmek için önemli tarım ürünlerinin sanal su muhtevaları hesaplanmış ve ürünlerin ekonomik değeri ile karşılaştırılıp, tartışılmıştır. Türkiye’deki ilk SA analizleri arasında olan bu çalışma, su kaynaklarının planlanması ve iklim değişikliğine uyum kapsamında önemlidir.

Kaynakça

  • 1. Albostan A., Önöz B., Wavelet application approach on the chaotic analysis of dialy river discharge, Journal of the Faculty of Engineering and Architecture of Gazi University, 30(1), 39-48, 2015.
  • 2. Tunç Dede Ö., Sezer M., The application of Canadian water quality index (CWQI) model ort he assessment of water quality of Aksu creek, Journal of the Faculty of Engineering and Architecture of Gazi University, 32(3), 909-917, 2017.
  • 3. Tunc Dede O., Telci İ.T., Aral M.M., The Use of Water Quality Index Models ort he Evaluation of Surface Water Quality: A Case Study for Kirmir Basin, Ankara, Turkey, Water Quality Exposure and Health, 5,41-56, 2013.
  • 4. Batan M., Toprak Z.F., Financial Comparison of the Kyoto Protocol Obligations and the Natural Disaster Losses, Batman University Journal of Life Sciences, 7 (2/2),180-189, 2017.
  • 5. Gürer İ., Uçar İ., Simulation of the runoff hydrograph by SRM supported by GIS and remote sensing (KayseriSariz creek watershed case study), Journal of the Faculty of Engineering and Architecture of Gazi University, 28(1), 91-101, 2014.
  • 6. Toprak Z.F., Hamidi N., Toprak Ş., Şen, Z., Climatic identity assessment of the climate change.Int. J. Global Warming. 5(1),30-45,2013.
  • 7. Yılmaz M., Drought Analysis of Konya Closed Basin with the Use of TMPA Satellite-Based Precipitation Data, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2),541-549,2017.
  • 8. Batan M., Global climate change and inevitable conclusions, PhD Thesis, Dicle University, Institute of Natural and Applied Sciences, Diyarbakır, 2014.
  • 9. Gümüş V., Başak A., Oruç N., Drought Analysis of Şanlıurfa Station with Standard Precipitation Index (SPI), Harran Univercity Journal of Engineering, 1(1), 36-44, 2016.
  • 10. Hamidi. N., Temperature-Rainfall and Drought Analysis for Diyarbakir City, Turkey International Journal of Scientific and Technological Research, 4 (10), 572-582, 2018.
  • 11. Distefano T., Kelly S., Are we in deep water? Water scarcity and its limits to economic growth, Ecological Economics, 142, 130-147, 2017.
  • 12. Alcamo, J., Florke, M., Marker, M., Future long-term changes in global water resources driven by socioeconomic and climatic changes. Hydrolog.Sci.J.52(2), 247-275, 2007.
  • 13. Dönmez S., Assessing Akşehir Lake’s recession using meteorological and Earth observation data, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 177-188, 2018.
  • 14. Sener E., Davraz A., Sener S., Investigation of Akşehir and Eber Lakes (SW Turkey) coastline change with multitemporal satellite images. Water Resour. Manage. 24, 727-745. 2010.
  • 15. Dişli M., Akkurt F., Alıcılar A., Evaluation on water quality of Şanlıurfa Fish Lake concerning with physical parameters, Journal of the Faculty of Engineering and Architecture of Gazi University, 19 (3), 287-294, 2013.
  • 16. Novoa V., Ahumada-Rudolph R., Rojas O., Munizaga J., Sáez K., Arumí J.L., Sustainability assessment of the agricultural water footprint in the Cachapoal River basin, Chile, Ecological Indicators, 98, 19-28,2019.
  • 17. Russo, T., Alfredo, K., Fisher, J., Sustainable water management in urban, agricultural, and natural systems. Water 6 (12), 3934-3956,2014.
  • 18. Aküzüm T., Çakmak B., Gökalp Z., Evaluation of Water Resources Management in Turkey, İnternational Journal of Agricultural and Natural Sciences, 3 (1),67-74,2010.
  • 19. Dumont A., Salmoral G., Llamas M.R., The water footprint of a river basin with a special focus on groundwater: The case of Guadalquivir basin (Spain), Water Resources and Industry, 1(2), 60-76, 2013.
  • 20. Johnson M.B., Mehrvar M., An assessment of the grey water footprint of winery wastewater in the Niagara Region of Ontario, Canada, Journal of Cleaner Production, 214, 623-632, 2019.
  • 21. Quinteiro P., Rafael S., Villanueva-Rey P., Ridoutt B., Lopes M., Arroja L., et al., A characterisation model to address the environmental impact of green water flows for water scarcity footprints, Science of The Total Environment, 626, 1210-1218, 2018.
  • 22. Zhang Y., Huang K., Yu Y., Hu T., Wei J., Impact of climate change and drought regime on water footprint of crop production: the case of Lake Dianchi Basin, China, Natural Hazards, 79 (1), 549-566, 2015.
  • 23. Hoekstra A.Y., Chapagain A.K., Aldaya M.M., Mekonnen M.M., The Water Footprint Assessment Manual, Water Footprint Network. 2011.
  • 24. Ercin A.E., Hoekstra A.Y., Water footprint scenarios for 2050: A global analysis, Environment International, 64, 71-82, 2014.
  • 25. Muratoglu A., Water footprint assessment within a catchment: A case study for Upper Tigris River Basin, Ecological Indicators, 106, 105467, 2019.
  • 26. Bakanoğulları F., Analysis of Drought Intensity Using SPEI and SPI Indices in Damlıca Watershed-İstanbul, Turkey, Soil Water Journal, 9(1),1-10,2020.
  • 27. Veettil A.V., Mishra A.K., Potential influence of climate and anthropogenic variables on water security using blue and green water scarcity, Falkenmark index, and freshwater provision indicator, Journal of Environmental Management, 228,346-362,2018.
  • 28. Vanham D., A holistic water balance of Austria - How does the quantitative proportion of urban water requirements relate to other users?, Water Science and Technology, 66 (3), 549-555, 2012.
  • 29. Muratoğlu A., Assessment of water footprint of production: A case study for Diyarbakır province. Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 845-858, 2020.
  • 30. Hoekstra A.Y., Hung P.Q., A quantification of virtual water flows between nations in relation to international crop trade, Water Research, 49 (11), 203–209, 2002.
  • 31. Chapagain A.K., Hoekstra A.Y., Water footprint of nations. Volume 1 : Main report, Value of Water Research Report Series, 1 (16), 1-80, 2004.
  • 32. Hoekstra A.Y., Chapagain A.K., Water footprints of nations: Water use by people as a function of their consumption pattern, Water Resources Management, 21 (1), 35-48, 2006.
  • 33. Mekonnen M.M., Hoekstra A.Y., A global and highresolution assessment of the green, blue and grey water footprint of wheat, Hydrology and Earth System Sciences, 14 (7), 1259-1276, 2010.
  • 34. Aldaya M.M., Llamas M.R., Water footprint analysis of the Guadiana river basin, Unesco-IHE 2008.
  • 35. Muratoglu A., Water Footprint Analysis of Tigris River Basin, 1st İnternational Potable Water and Waste Water Symposium, 2018.
  • 36. Ekinci B., Sample Country Practices for Efficient Use of Water Resources and Applicability of These Studies in Our Country, Master Thesis, Republic of Turkey Ministry of Agriculture and Forestry, 2015.
  • 37. Hu T., Huang K., Yu Y., Zhang X., Xu Y., Wang X., Measuring Water Footprint on a Lake Basin Scale: A Case Study of Lake Dianchi, China, Clean - Soil, Air, Water, 44 (10), 1296-1305, 2016.
  • 38. Chen J., Shi H., Sivakumar B., Peart M.R., Population, water, food, energy and dams, Renewable and Sustainable Energy Reviews, 56, 18–28, 2016.
  • 39. Kinouchi T., Nakajima T., Mendoza J., Fuchs P., Asaoka Y., Water security in high mountain cities of the Andes under a growing population and climate change: A case study of La Paz and El Alto, Bolivia, Water Security, 6, 100025, 2019.
  • 40. Batan M. ve Toprak Z.F., Positive effects of global climate change and the assessment in adaptation to climate change, Dicle University, Journal of Engineering, 6(2), 93-102, 2015.
  • 41. Önen F., Aslan B., Hamidi N., Diyarbakır drinking water needs modeling with gene expression programming, Dicle University, Journal of Engineering, 9 (2), 859-870, 2018. 42. TUİK, Turkish Statistical Institute, http://www.tuik.gov.tr/Start.do, . Erişim tarihi Haziran 25, 2020.
  • 43. Oruç N., Drought Analysis of The Southeast Anatolia Region, Master Thesis, Pamukkale University, Institute of Science, Denizli, 2017.
  • 44. Keskiner A. D., Çetin M., Akın S., Şimşek M., Analysis of Climate Type Tendencies by Using Erinç Drought Index Method: An Application to Southeastern Anatolia Project (GAP) Area, 10th National Hydrology Congress, 2019.
  • 45. Benek S., Şahinalp M.S., Elmastaş N., Challenges arosen by irrigation facilities in terms of land use in Şanlıurfa province, V. National Geography Symposium, Ankara, 2008.
  • 46. Municipality of Sanliurfa, https://www.sanliurfa.bel.tr/icerik/14/2/ekonomik-yapi, Date of access, June 18, 2020.
  • 47. Mekonnen M.M., Hoekstra A.Y., The green, blue and grey water footprint of crops and derived crop products, Hydrology and Earth System Sciences, 15 (5), 1577-1600, 2011.
  • 48. Mekonnen M.M., Hoekstra A.Y., National water footprint accounts: The green, blue and grey water footprint of production and consumption, Volume 1: Main report, UNESCO-IHE Institute for Water Education, Delfth, The Netherlands, 2011.
  • 49. Pegram G., Conyngham S., Aksoy A., Dıvrak B.B., Öztok D., The Water Footprint Report on Turkey: Water, Production, İnternational Trade Relationship, WWF 2014.
  • 50. Avanoz Z., Assessment of Water Footprint of Crop Production in Turkey, Master Thesis, The Graduate School of Natural and Applied Science of Batman University Batman, 2020.
  • 51. Zhuo L., Mekonnen M.M., Hoekstra A.Y., Sensitivity and uncertainty in crop water footprint accounting: A case study for the Yellow River basin, Hydrology and Earth System Sciences, 18 (6), 2219–2234, 2014.
  • 52. Hoff H., Döll P., Fader M., Gerten D., Hauser S., Siebert S., Water footprints of cities indicators for sustainable consumption and production, Hydrology and Earth System Sciences, 18, 213-226, 2014.
  • 53. Vanham D., Bidoglio G., The water footprint of Milan, Water Science and Technology, 69 (4), 789-795, 2014.
  • 54. Manzardo A., Loss A., Fialkiewicz W., Rauch W., Scipioni A., Methodological proposal to assess the water footprint accounting of direct water use at an urban level: A case study of the Municipality of Vicenza, Ecological Indicators, 69, 165–175, 2016.
  • 55. Xu M., Li C., Wang X., Cai Y., Yue W., Optimal water utilization and allocation in industrial sectors based on water footprint accounting in Dalian City, China, Journal of Cleaner Production, 176, 1283-1291, 2018.
  • 56. Zhang F., Zhan J., Li Z., Jia S., Chen S., Impacts of urban transformation on water footprint and sustainable energy in Shanghai, China, Journal of Cleaner Production, 190, 847–853, 2018.
  • 57. Feng L., Hayat T., Alsaedi A., Ahmad B., The driving force of water footprint under the rapid urbanization process: a structural decomposition analysis for Zhangye city in China, Journal of Cleaner Production, 163, S322–S328, 2017.
  • 58. Zhao X., Tillotson M.R., Liu Y.W., Guo W., Yang A.H., Li Y.F., Index decomposition analysis of urban crop water footprint, Ecological Modelling, 348, 25–32, 2017.
  • 59. Cai B., Liu B., Zhang B., Evolution of Chinese urban household’s water footprint, Journal of Cleaner Production, 208, 1-10, 2019.
  • 60. Dursun, N., Determination of the Water Footprint of the Staff and Students and Yenisey Campus of Ardahan University, Erzincan University, Journal of Science and Technology, 12(3),1526-1536, 2019.
  • 61. Municipality of Sanliurfa, https://www.sanliurfa.bel.tr/icerik/22/2/iklim, Date of access , June 15, 2020.
  • 62. Governorship of Sanliurfa, http://www.sanliurfa.gov.tr/genel-bilgiler, Date of access, June 22, 2020.
  • 63. İnternet..Resource,http://cografyaharita.com/haritalarim/4l_sanliurfa_ili_haritasi.png, Date of access, June 27, 2020.
  • 64. MGM, Turkish State Meteorological Service, https://www.mgm.gov.tr/. Date of access, June 28, 2020.
  • 65. Benek S., Agricultural Structure, Problems Of Province Of Şanlıurfa And Recommendations, Turkish Journal Geographical Sciences , 4(1), 67-91, 2006.
  • 66. Turkish State, Ministry of Environment and Urbanism, Directorate Environment and Urbanism of Sanliurfa province, Sanliurfa Province Environmental Status Report 2017, 2018.
  • 67. FAO, CLIMWAT 2.0, Food and Agricultural Organization of the United Nations, http://www.fao.org/land-water/databases and software/climwat-for-cropwat/en/. Date of access June 10, 2020.
  • 68. TAGEM, DSI, Plant water consumption guide of irrigated plant in Turkey, Turkish General Directorate of Agricultural Research and Policies, Turkish General Directorate of State Hydraulic Works, Ankara, 2017.
  • 69. Ran Y., Lannerstad M., Herrero M., Van Middelaar C.E., De Boer I.J.M., Assessing water resource use in livestock production: A review of methods, Livestock Science, 187, 68–79, 2016.
  • 70. FAO, Food and Agricultural Organization of the United Nations, http://www.fao.org/home/en/. Date of access, June 10, 2020.
  • 71. FAO, Crop Water Information, http://www.fao.org/land-water/databases-and software/crop-information/en/. Date of access, June 16, 2020.
  • 72. Mekonnen M.M., Hoekstra A.Y., A global assessment of the water footprint of farm animal products, Ecosystems, 15 (3), 401–415, 2012.
  • 73. Chapagain A.K., Hoekstra A.Y., Water Footprints of Nations, Volume 2: Appendices, Value of Water Research Report Series No.16, UNESCO-IHE Institute for Water Education, The Netherlands, 2004.
  • 74. Hoekstra A.Y., The water footprint of industry, Assessing and Measuring Environmental Impact and Sustainability. Butterworth-Heinemann, 2015.
  • 75. Postel S.L., Daily G.C., Ehrlich P.R., Human Appropriation of Renewable Fresh Water, Science, 271 (5250), 785-788, 1996.
  • 76. FAO, CropWat 8.0 Model, Food and Agricultural Organization of the United Nations, http://www.fao.org/land-water/databases-and-software/cropwat/en/. Date of Access, June 15, 2020.
  • 77. Allen, R.G., Pereira,L.S.,Raes, D., and Smith, M. (1998) ‘Crop evapotranspiration Guidelines for computing crop water requirements FAO Irrigation and drainage paper 56’. Food and Agriculture Organization of the UnitedNations,Rome,Italy.http://www.fao.org/docrep/X0490E/x0490e00.htm 1 April 2004.
  • 78. USDA-SCS, Chapter:2 Irrigation Water Requirements, Part 623 National Engineering Handbook, 1993.
  • 79. Ercin A.E., Governance of globalized water resources: The application of water footprint to inform corporate strategy and government policy, PhD Dissertation in University of Twente, 2012.
  • 80. Hoekstra A.Y., The hidden water resource use behind meat and dairy, Animal Frontiers, 2 (2), 3–8, 2012.
  • 81. Fu Y., Zhao J., Wang C., Peng W., Wang Q., Zhang C., The virtual Water flow of crops between intraregional and interregional in mainland China, Agricultural Water Management, 208, 204-213, 2018.
  • 82. MGM, Turkish State Meteorological Service, Hydrometeorology Branch Office, 2019.
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Murat Batan 0000-0002-9207-4730

Yayımlanma Tarihi 2 Eylül 2021
Gönderilme Tarihi 5 Eylül 2020
Kabul Tarihi 8 Nisan 2021
Yayımlandığı Sayı Yıl 2021