I-enkesitli betonarme kirişlerde ultra-yüksek performanslı lifli beton kullanımının değerlendirilmesi
Yıl 2021,
, 1431 - 1448, 24.05.2021
Kaan Türker
,
Altuğ Yavaş
,
Tamer Birol
,
Cengiz Gültekin
Öz
Çalışmada, I-enkesitli betonarme kirişlerde Ultra Yüksek Performanslı Lifli Beton (UYPLB) kullanımının eğilme/kesme davranışına etkileri deneysel olarak incelenmiş, avantaj ve dezavantajları değerlendirilmiştir. Deneysel sonuçlar referans alınarak, UYPLB kirişlerin tasarımına yönelik AFGC 2013 sayısal prosedürünün kullanılabilirliği değerlendirilmiştir. Deneysel programda, UYPLB’li ve geleneksel betonlu kirişler üzerinde çekme donatısı oranı bakımından parametrik inceleme yapılmıştır. Kirişlere dört noktalı eğilme testi uygulanmış ve yük-deplasman davranışları, kırılma şekilleri, yük taşıma kapasiteleri, deplasman süneklikleri, çatlak davranışları, eğilme rijitlikleri ve beton/donatı şekildeğiştirme davranışları belirlenmiştir. Sonuç olarak, I-enkesitli kirişlerde UYPLB kullanımı, çalışmada incelenen tüm donatı oranları için eğilme ve kesme kapasitesi, rijitlik ve çatlak sınırlama bakımından geleneksel betona göre önemli avantajlar sağlamıştır. UYPLB’nin bu parametreler üzerindeki etkisi kirişte kullanılan donatı oranına göre farklılık göstermiştir. UYPLB kullanımı kiriş süneklikleri ve maksimum yük sonrası çatlak davranışı bakımından özellikle düşük donatı oranlarında bir dezavantaja neden olmuştur. UYPLB’nin bu olumsuz etkisi en yüksek donatılı kirişte avantaja dönüşmüştür. AFGC 2013 kılavuzundaki sayısal prosedür ile kiriş eğilme kapasiteleri yeterli doğrulukla belirlenebilmiştir. Ancak, UYPLB kirişlerde yüksek donatı oranlarına çıkıldığında, AFGC 2013’deki taşıma gücü limit durumuna ait şekildeğiştirmelerde deneysel sonuçlarla uyumsuzluklar oluşabildiği görülmüştür.
Destekleyen Kurum
TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU
Teşekkür
Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu'nun (TÜBİTAK) 116M517 numaralı projesi
ile desteklenmiştir. Yazarlar TÜBİTAK'a teşekkürlerini sunarlar.
Kaynakça
- Naaman A. E., Wille K., The Path to Ultra-High Performance Fiber Reinforced Concrete (UHP-FRC): Five decades of progress, 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel-Germany, 3-15, March 7-9, 2012.
- Naaman, A. E., High Performance Fiber Reinforced Cement Composites Classification And Applications, CBM–C1 International Workshop, 389-400, Karachi-Pakistan, December 10-11, 2007.
- Benson S. D. P., Karihaloo B. L., CARDIFRC®- Development and mechanical properties. Part III: uniaxial tensile response and other mechanical properties, Mag. of Conc. Res., 57 (8), 433–443, 2005.
- S. Pyo, S. El-Tawil, A. E. Naaman, Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates,” Cem. and Conc. Res., 88, 144–156, 2016.
- Yoo D. Y., Banthia N., Yoon Y. S., Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars, Eng. Struct., 111, 246-262, 2016.
- Hasgul U., Turker K., Birol T., Yavas A., Flexural behavior of ultra-high-performance fiber reinforced concrete beams with low and high reinforcement ratios, Struct. Concr., 19 (6), 1577–90, 2018.
- Kodur V., Solhmirzaei R., Agrawal A., Aziz E. M., Soroushian P., (2018). Analysis of flexural and shear resistance of ultra high performance fiber reinforced concrete beams without stirrups, Eng. Struct., 174, 873-884, 2018.
- Yoo D. Y., Yoon Y. S., Structural performance of ultra-high-performance concrete beams with different steel fibers, Eng. Struct., 102, 409-423, 2015.
- Türker K., Birol T., Yavaş A., Hasgül U., Ultra yüksek performanslı lifli beton içeren kirişlerde etkin çelik lif tipi incelemesi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16, 776-785, 2016.
- Yoo D. Y., Banthia N., Yoon Y. S., Experimental and numerical study on flexural behavior of UHPFRC beams with low reinforcement ratios, Canadian Journal of Civil Engineering, 44 (1), 18-28, 2017.
- Graybeal B, Material property characterization of ultra-high performance concrete”, FHWA-HRT-06-103, McLean, Va, USA, 2006.
- Liew J, Richard Y, Xiong DX., Ultra-high strength concrete filled composite columns for multi-storey building construction, Advan in Struct Eng, 15(9), 1487-1503, 2012.
- Chen S. H., Zhang R., Jia L. J., Wang J. Y., Flexural behaviour of rebar-reinforced ultra-high- performance concrete beams, Mag. of Conc. Res., 70 (19), 997-1015, 2018.
- Turker, K., Hasgul, U., Birol, T., Yavas, A. and Yazici, H., Hybrid fiber use on flexural behavior of ultra high performance fiber reinforced concrete beams, Composite Structures, 229, 111400, 2019.
- Baby F., Marchand P., Toutlemonde F., Shear behavior of ultrahigh performance fiber-reinforced concrete beams. I: Experimental investigation, J. Struct. Eng., 140(5), 04013111 1-10, 2014.
- Yavaş A., Hasgul U., Turker K., Birol T., Effective fiber type investigation on the shear behavior of ultra high-performance fiber-reinforced concrete beams, Advances in Structural Engineering, 22 (7), 1591-1605, 2019.
- Voo Y. L., Poon W. K., Foster S. J., Shear strength of steel fiber-reinforced Ultra High Performance Concrete beams without stirrups, J. Struct. Eng., 136, 1393-1400, 2010.
- Resplendino J., Petitjean J., Ultra-high-performance concrete: First recommendations and examples of application, Proceedings of the 3rd International Symposium on High Performance Concrete / PCI National Bridge Conference, Orlando-USA, 77, October 19-22, 2003.
- Tanaka Y., Maekawa K., Kameyama Y., Ohtake A., Musha H., Watanabe N., The innovation and application of UHPC bridges in Japan. Toutlemonde, F. and Resplendio, J. (Ed.), Designing and Building with UHPFRC: State of the Art Development, 149-187, London, England, 2011.
- SAMARIS, Full Scale Application of UHPFRC for the Rehabilitation of Bridges – from the Lab to the Field. European project 5th FWP/SAMARIS – Sustainable and Advanced Materials for Road Infrastructures, Report D22, WP 14: HPFRCC, 2005.
- Moreillon L., Menétrey P., Rehabilitation and strengthening of existing RC structures with UHPFRC: Various application” RILEM-fib-AFGC Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete, France: RILEM Publication S.A.R.L, 27-136, 2013.
- Fehling E., Schmidt M., Walraven J., Leutbecher T., Frönlich S., Betonkalender: Ultra-high performance concrete UHPC, Wilhelm Ernst & Sohn, Berlin, 2014.
- Taşdemir M. A., Arslan G., Taftan K. S., Haberveren S. (2007, Aralık). Yüksek performanslı çimento esaslı kompozitlerin tasarımı, mekanik davranışı ve uygulama alanları, 7. Ulusal Beton Kongresi, 199-214, İstanbul-Türkiye, Aralık, 2007.
- AFGC, Recommendation: Ultra high performance fibre-reinforced concretes, Association Française de Génie, France, 2013.
- NF P 18-710, National addition to Eurocode 2-Design of concrete structures: specific rules for Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC), Association Francaise de Normalisation, Saint-Denis-France, 2016.
- JSCE, Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC), Japanese Society of Civil Engineers, Tokyo-Japan, 2008.
- SIA 20152, Ultra-high performance fibre reinforced cement-based composites (UHPFRC): Construction material, dimensioning and application, Swiss Federal Institute of Technology, Switzerland, 2016.
- V. Perry, Ultra-High-Performance-Concrete Advancements and Industrialization-The Need for Standard Testing, Advances in Civil Engineering Materials, 4(2), 1-16, 2015.
- Gowripalan N. and Gilbert I., Design guidelines for ductal prestressed concrete beams, VSL, Australia, 2000.
- Graybeal B. A., Material property characterization of Ultra-high performance concrete (Report No: FHWA-HRT-06-103), U.S. Department of Transportation, Virginia-USA, 2006.
- TS 500, Betonarme yapıların tasarım ve yapım kuralları, Türk Standartları Enstitüsü, Ankara, 2000.
- ASTM C1611M-14, Standard test method for slump flow of self-consolidating concrete, Pensilvanya, 2014.
- Graybeal B. A., Devis M., Cylinder or Cube: Strength testing of 80 to 200 MPa (11.6 to 29 ksi) Ultra-High-Performance Fiber-Reinforced Concrete, ACI Mater. J., 105, 603-609, 2008.
- Qian S., Li V. C., Simplified inverse method for determining the tensile properties of SHCCs, Journal of Advanced Concrete Technology, 6 (2), 353-363, 2008.
- Baby F., Graybeal B., Marchand P., Toutlemonde F., A proposed flexural test method and associated inverse analysis for UHPFRC, ACI Mater. J., 109 (5), 545-555, 2012.
- Park R., Evaluation of ductility of structures and structural assemblages from laboratory testing, Bulletin of the New Zealand National Society for the Earthquake Engineering, 22 (3), 155-166, 1989.
- Jang Y., Park H.G., Kim S.S., Kim J.H., Kim Y.G., On the ductility of high-strength concrete beams. Int. J. Concr. Struct. Mater., 2(2),115-122, 2008.
- Yoo D.Y., Banthia N., Yoon Y.S., Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars, Eng. Struct.,111, 246-262, 2016.
- EN 1992-1-1., Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings, London: BSi., 2005.
- Gültekin C., Ultra Yüksek Performansli Lifli Beton (UYPLB) içeren I enkesitli kirişlerin eğilme davranışının deneysel ve nümerik incelenmesi, Yüksek Lisans Tezi, Balıkesir Ü., Fen bilimleri Enstitüsü, Balıkesir, 2020.