Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı destekler ile hazırlanan sentetik Co-Mn-Pt katalizörünün NaBH4 hidroliz performansı ve kinetik değerlendirmesi

Yıl 2022, , 423 - 438, 10.11.2021
https://doi.org/10.17341/gazimmfd.877826

Öz

Bu çalışmada Co0,92-xMn0,08Ptx/TiO2 ve Co0,92-xMn0,08Ptx/Al2O3 nano katalizörleri sentezlenmiştir. Destekli katalizörlerin üretilmesinde impregnasyon tekniği kullanılmıştır. Katalizörlerin hidroliz yöntemi ile NaBH4’ü parçalararak yüksek hızda hidrojen üretme yetenekleri belirlenmiştir. Katalizörlerin özelliklerinin belirlenmesi için geçirimli ve taramalı electron mikroskopları (TEM ve SEM), X-ışını difraktometresi (XRD), yüzey alanı ölçüm ve gözenek dağılımı (Brunauer Emmett Teller) analizleri, enerji dağılım spektroskopisi (EDX) ve hidroliz testleri gerçekleştirilmiştir. Testler destek ile aktif bileşenin birbiri ile iyi bir uyum içinde ve sıkıca tutunmuş halde olduğunu göstermiştir. TiO2 destek ile aktivitenin daha yüksek olduğu ve 22 ˚C sıcaklıkta 40 mg Co0,85Mn0,08Pt0,07/TiO2 katalizör ile gerçekleştirilen hidroliz testlerinde 5 mL (0,525 M) NaBH4 çözeltisinin hidrojen üretim hızı 6.250 mL H2/min.gkat olarak bulunmuştur. Değişik NaOH, NaBH4 miktarları ve sıcaklıklarda kinetik çalışmalar yapılmıştır. Hidroliz tepkimesi için uygun NaOH miktarı 0,15 M olarak tespit edilmiştir. Tepkime hızı üzerinde katalizör miktarının etkin, NaBH4 miktarına göre ise sıfırıncı dereceden kinetiğe sahip olduğu belirlenmiştir. Co0,85Mn0,08Pt0,07 içerikli katalizörlerin TiO2 ve Al2O3 destekleri için sırasıyla 34,19 ve 40,02 kJ/mol aktivasyon enerjisine sahip olduğu tespit edilmiştir.

Destekleyen Kurum

Hitit Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

MUH19001.19.001

Teşekkür

Bu çalışma Hitit Üniversitesi BAP MUH19001.19.001 numaralı projesi tarafından desteklenmiştir.

Kaynakça

  • Peng C., Li T., Zou Y., Xiang C., Xu F., Zhang J., Sun L., Bacterial cellulose derived Carbon as a support for catalytically active CoB alloy for hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 46, 666-675, 2021.
  • Li J., Hong X., Wang Y., Luo Y., Huang P., Li B., Zhang K., Zou Y., Sun L., Xu F., Rosei F., Verevkin S.P., Pimerzin A.A., Encapsulated cobalt nanoparticles as a recoverable catalyst for the hydrolysis of sodium borohydride, Energy Storage Mater., 27, 187-197, 2020.
  • Ceyhan A.A., Edebali S., Fangaj E., A study on hydrogen generation from NaBH4 solution using Co loaded resin catalysts, Int. J. Hydrogen Energy, 45, 34761-34772, 2020.
  • Eugénio S., Demirci U.B., Silva T.M., Carmezim M.J., Montemor M.F., Copper-cobalt foams as active and stable catalysts for hydrogen release by hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 41, 8438-8448, 2016.
  • Kilinc D., Sahin O., Highly active and stable CeO2 supported nickel complex catalyst in hydrogen generation, Int. J. Hydrogen Energy, 46, 499-507, 2021.
  • Balciunaite A., Sukackiene Z., Antabaviciute K., Vaiciuniene J., Naujokaitis A., Tamasauskaite-Tamasiunaite L., Norkus E., Investigation of hydrogen generation from sodium borohydride using different cobalt catalysts, Int. J. Hydrogen Energy, 46, 1989-1996, 2021.
  • Kılınç D., Şahin Ö., Performance of Zn Schiff Base complex catalyst in NaBH4 hydrolysis reaction, Int. J. Hydrogen Energy, 45, 34783-34792, 2020.
  • Filiz B.C., Figen A.K., Hydrogen production from sodium borohydride originated compounds: Fabrication of electrospun nano-crystaline Co3O4 catalyst and its activity, Int. J. Hydrogen Energy, 44, 9883-9895, 2019.
  • Çakanyıldırım Ç., Gürü M., Processing of LiBH4 from its elements by ball milling method, Renewable Energy, 33(11), 2388-2392, 2008.
  • Çakanyıldırım Ç., Demirci Ü., Şener T., Qiang X., Philippe M., Nickel based bimetallic nanocatalysts in high extent dehydrogenation of hydrazine borane, Int. J. Hydrogen Energy, 37, 9722-9729, 2012.
  • Deng J., Sun B., Xu J., Shi Y., Xie L., Zheng J., Li X., A monolithic sponge catalyst for hydrogen generation from sodium borohydride solution for portable fuel cells, Inorganic Chemistry Frontiers, Inorg. Chem. Front., 8, 35-40, 2021.
  • İzgi M.S., Baytar O., Şahin Ö., Kazıcı H.Ç., CeO2 supported multimetallic nano materials as an efficient catalyst for hydrogen generation from the hydrolysis of NaBH4, Int. J. Hydrogen Energy, 45, 34857-34866, 2020.
  • Balbay A., Selvitepe N., Saka C., Fe doped CoB catalysts with phosphoric acidactivated montmorillonite as support for efficient hydrogen production via NaBH4 hydrolysis, Int. J. Hydrogen Energy, 46, 425-438, 2021.
  • Ekinci A., Cengiz E., Kuncan M., Şahin Ö., Hydrolysis of sodium borohydride solutions both in the presence of NiB catalyst and in the case of microwave application, Int. J. Hydrogen Energy, 45, 34749-34760, 2020.
  • Hansu T.A., Sahin O., Caglar A., Kivrak H., A remarkable Mo doped Ru catalyst for hydrogen generation from sodium borohydride the effect of Mo addition and estimation of kinetic parameters, React. Kinet. Mec. Cat., 131, 661-676, 2020.
  • Zhang H., Zhang L., Rodriguez-Perez I.A., Miao W., Chen K., Wang W., Li Y., Han S., Carbon nanospheres supported bimetallic PtCo as an efficient catalyst for NaBH4 hydrolysis, Appl. Surf. Sci., 540, 148296, 2021.
  • Bilen M., Gürü M., Çakanyildirim Ç., Conversion of KCl into KBH4 by mechano-chemical reaction and its catalytic decomposition, J. Electron. Mater., 46, 4126–4132, 2017.
  • Ar İ., Güler Ö.U., Gürü M., Synthesis and characterization of sodium borohydride and novel catalyst for its dehydrogenation, Int. J. Hydrogen Energ., 43, 20214-20233, 2018.
  • Chen W., Ouyang L.Z., Liu J.W., Yao X.D., Wang H., Liu Z.W., Zhu M., Hydrolysis and regeneration of sodium borohydride (NaBH4) - A combination of hydrogen production and storage, J. Power Sources, 359, 400-407, 2017.
  • Ouyang L., Chen W., Liu J., Felderhoff M., Wang H., Zhu M., Enhancing the regeneration process of consumed NaBH4 for hydrogen storage, Adv. Energy Mater., 7, 1700299 1-8, 2017.
  • Zhong H., Ouyang L.Z., Ye J.S., Liu J.W., Wang H., Yao X.D., Zhu M., An one-step approach towards hydrogen production and storage through regeneration of NaBH4, Energy Storage Mater., 7, 222-228 2017.
  • Arbağ H., Yaşyerli S., Yaşyerli N., Doğu G., Doğu T., Metanın kuru reformlanma reaksiyonunda indirgeme ve reaksiyon sıcaklıklarının mezogözenekli alümina destekli nikel katalizörlerin aktivitelerine ve karbon oluşumuna etkileri, J. Fac. Eng. Archit. Gaz., 33:1, 63-73, 2018.
  • Yuan, H., Wang S., Ma Z., Kundu M., Tang B., Li J., Wang X., Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride, Chem. Eng. J., 404, 126474, 2021.
  • Saka C., Eygi M.S., Balbay A., Cobalt loaded organic acid modified kaolin clay for the enhanced catalytic activity of hydrogen release via hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 46, 3876-3886, 2021.
  • Wang L., Li Z., Zhang Y., Zhang T., Xie G., Hydrogen generation from alkaline NaBH4 solution using electroless-deposited Co-Ni-W-P/ɣ-Al2O3 as catalysts, J. Alloys Compd., 702, 649-658, 2017.
  • Li Z. Wang L., Zhang Y., Xie G., Properties of Cu-Co-P/ɣ-Al2O3 catalysts for efficient hydrogen generation by hydrolysis of alkaline NaBH4 solution, Int. J. Hydrogen Energy, 42, 5749-5757, 2017.
  • Yao Z., Zhao J.Y., Zhao C., Deng S., Zhuang G., Zhong X., Wei Z., Li Y., Wang S., Wang J., A first-principles study of reaction mechanism over Carbon decorated oxygen-deficient TiO2 supported Pd catalyst in direct synthesis of H2O2, Chin. J. Chem. Eng., In press
  • Shen X., Wang Q., Wu Q., Guo S., Zhang Z., Sun Z., Liu B., Wang Z., Zhao B., Ding W., CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution, Energy, 90, 464-474, 2015.
  • Liao J., Feng Y., Lin W., Su X., Ji S., Li L., Zhang W., Pollet B.G., Li H., CuO-NiO/Co3O4 hybrid nanoplates as highly active catalyst for ammonia borane hydrolysis, Int. J. Hydrogen Energy, 45, 8168-8176, 2020.
  • Wang C., Wang H., Wang Z., Li X., Chi Y., Wang M., Gao D., Zhao Z., Mo remarkably enhances catalytic activity of Cu@MoCo core-shell nanoparticles for hydrolytic dehydrogenation of ammonia borane, Int. J. Hydrogen Energy, 43, 7347-7355, 2018.
  • Dai P., Zhao X., Xu D., Wang C., Tao X., Liu X., Gao J., Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor, Int. J. Hydrogen Energy, 44(53), 28463-28470, 2019.
  • Salameh C., Bruma A., Malo S., Demirci U.B., Miele P., Bernard S., Monodisperse platinum nanoparticles supported on highly ordered mesoporous silicon nitride nanoblocks: superior catalytic activity for hydrogen generation from sodium borohydride, RSC Adv. 5, 58943-58951, 2015.
  • Akbayrak S., Özkar S., Inverse relation between the catalytic activity and catalyst concentration for the ruthenium(0) nanoparticles supported on xonotlite nanowire in hydrogen generation from the hydrolysis of sodium borohydride, J. Mol. Catal. A-Chem., 424, 254-260, 2016.
  • Wei Y., Wang Y., Wei L., Zhao X., Zhou X., Liu H., Highly efficient and reactivated electrocatalyst of ruthenium electrodeposited on nickel foam for hydrogen evolution from NaBH4 alkaline solution, Int. J. Hydrogen Energy, 43, 592-600, 2018.
  • Wang H.L., Yan J.M., Wang Z.L., Jiang Q., One-step synthesis of Cu@FeNi core-shell nanoparticles: Highly active catalyst for hydrolytic dehydrogenation of ammonia borane, Int. J. Hydrogen Energy, 37, 10229-10235, 2012.
  • Chang J., Tian H., Du F., Investigation into hydrolysis and alcoholysis of sodium borohydride in ethanol-water solutions in the presence of supported Co-Ce-B catalyst, Int. J. Hydrogen Energy, 39, 13087-13097, 2014.
  • Izgi M.S., Şahin Ö., Saka C., ɣ-Al2O3 supported/Co-Cr-B catalyst for hydrogen evolution via NH3BH3 hydrolysis, Energ Source Part A, 34(14), 1620-1626, 2019.
  • Sehdev N., Medwal R., Annapoorni S., Enhanced phase stabilization of CoPt in the presence of Ag, J. Appl. Phys., 110(3), 033901, 2011.
  • Cao Y., Geng K., Geng H., Ang H., Pei J., Liu Y., Cao X., Zheng J., Gu H., Metal–Oleate Complex Derived Bimetallic Oxides Nanoparticles Encapsulated in 3D Graphene Networks as Anodes for Efcient Lithium Storage with Pseudocapacitance, Nano Micro Lett., 11(15) 1-14, 2019.
  • Huang X., Liu L., Gao H., Dong W., Yang M., Wang G., Hierarchically nanostructured MnCo2O4 as active catalysts for the synthesis of N-benzylideneaniline from benzyl alcohol and aniline, Green Chem., 19, 769-777, 2017.
  • Ansari S.A., Husain Q., Immobilization of Kluyveromyces lactis galactosidase on concanavalin A layered aluminium oxide nanoparticles—Its future aspects in biosensor applications, J. Mol. Catal. B: Enzym., 70, 119–126, 2011.
  • Tian H., Guo Q., Xu D., Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst, J. Power Sources, 195(8), 2136-2142, 2010.
  • Özdemir O.K., Analysis of kinetic properties for the hydrolysis reaction of NaBH4 and environmental effects in the hydrogen production of activated Co-Ti (II) -B alloy catalysts, J. Fac. Eng. Archit. Gaz., 34:3, 1585-1594, 2019.
  • Zou Y.J., Yin Y., Gao Y.B., Xiang C.L., Chu H.L., Qiu S.J., Yan E.H., Xu F., Sun L.X., Chitosan-mediated Co-Ce-B nanoparticles for catalyzing the hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 43, 4912-4921, 2018.
  • Izgi M.S., Sahin O., Odemis O., Saka C., Microwave treatment and fluorine addition on Co-B catalyst to improve the hydrogen production rate, Mater. Manuf. Process., 33, 196-201, 2018.
  • Çakanyıldırım Ç., An effective trimetalic crystalline catalyst for sodium borohydride hydrolysis, Energ source Part A, In press.
  • Zhang H., Xu G., Zhang L., Wang W., Miao W., Chen K., Cheng L., Li Y., Han S., Ultrafine cobalt nanoparticles supported on Carbon nanospheres for hydrolysis of sodium borohydride, Renewable Energy, 162, 345-354, 2020.

NaBH4 hydrolysis performance and kinetic evaluation of synthetic Co-Mn-Pt catalyst prepared with different supports

Yıl 2022, , 423 - 438, 10.11.2021
https://doi.org/10.17341/gazimmfd.877826

Öz

In this study, Co0.92-xMn0.08Ptx/TiO2 and Co0.92-xMn0.08Ptx/Al2O3 nano catalysts were synthesized. Impregnation method was applied for the supported catalyst synthesis. Catalyst’s abilities were tested on decomposing of NaBH4 and produce hydrogen with high rate. Transmission and scanning electron microscopies, X-ray diffraction (XRD), surface area and porosity (Brunauer Emmett Teller) and energy dispersion X-ray spectroscopy techniques are used to determine the catalyst properties. Tests prove that the catalyst active sites and support are fit well and embeded strongly. 40 mg Co0.85Mn0.08Pt0.07/TiO2 catalyst results in 6,250 mL H2/min.gcat hydrogen production rate with 5 mL (0.525 M) NaBH4 at 22°C. Different NaOH, catalyst, NaBH4 amounts and temperatures were investigated to obtain kinetis data. Optimum NaOH amount was obtained as 0.15 M for the hydrolysis reaction. Results reveals that the catalyst amounts mainly change the rate whereas hydrolysis reaction occurs according to zero order for NaBH4. Activation energies of Co0.85Mn0.08Pt0.07 containing TiO2 and Al2O3 supported catalysts were calculated as 34.19 and 40.02 kJ/mol, respectively.

Proje Numarası

MUH19001.19.001

Kaynakça

  • Peng C., Li T., Zou Y., Xiang C., Xu F., Zhang J., Sun L., Bacterial cellulose derived Carbon as a support for catalytically active CoB alloy for hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 46, 666-675, 2021.
  • Li J., Hong X., Wang Y., Luo Y., Huang P., Li B., Zhang K., Zou Y., Sun L., Xu F., Rosei F., Verevkin S.P., Pimerzin A.A., Encapsulated cobalt nanoparticles as a recoverable catalyst for the hydrolysis of sodium borohydride, Energy Storage Mater., 27, 187-197, 2020.
  • Ceyhan A.A., Edebali S., Fangaj E., A study on hydrogen generation from NaBH4 solution using Co loaded resin catalysts, Int. J. Hydrogen Energy, 45, 34761-34772, 2020.
  • Eugénio S., Demirci U.B., Silva T.M., Carmezim M.J., Montemor M.F., Copper-cobalt foams as active and stable catalysts for hydrogen release by hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 41, 8438-8448, 2016.
  • Kilinc D., Sahin O., Highly active and stable CeO2 supported nickel complex catalyst in hydrogen generation, Int. J. Hydrogen Energy, 46, 499-507, 2021.
  • Balciunaite A., Sukackiene Z., Antabaviciute K., Vaiciuniene J., Naujokaitis A., Tamasauskaite-Tamasiunaite L., Norkus E., Investigation of hydrogen generation from sodium borohydride using different cobalt catalysts, Int. J. Hydrogen Energy, 46, 1989-1996, 2021.
  • Kılınç D., Şahin Ö., Performance of Zn Schiff Base complex catalyst in NaBH4 hydrolysis reaction, Int. J. Hydrogen Energy, 45, 34783-34792, 2020.
  • Filiz B.C., Figen A.K., Hydrogen production from sodium borohydride originated compounds: Fabrication of electrospun nano-crystaline Co3O4 catalyst and its activity, Int. J. Hydrogen Energy, 44, 9883-9895, 2019.
  • Çakanyıldırım Ç., Gürü M., Processing of LiBH4 from its elements by ball milling method, Renewable Energy, 33(11), 2388-2392, 2008.
  • Çakanyıldırım Ç., Demirci Ü., Şener T., Qiang X., Philippe M., Nickel based bimetallic nanocatalysts in high extent dehydrogenation of hydrazine borane, Int. J. Hydrogen Energy, 37, 9722-9729, 2012.
  • Deng J., Sun B., Xu J., Shi Y., Xie L., Zheng J., Li X., A monolithic sponge catalyst for hydrogen generation from sodium borohydride solution for portable fuel cells, Inorganic Chemistry Frontiers, Inorg. Chem. Front., 8, 35-40, 2021.
  • İzgi M.S., Baytar O., Şahin Ö., Kazıcı H.Ç., CeO2 supported multimetallic nano materials as an efficient catalyst for hydrogen generation from the hydrolysis of NaBH4, Int. J. Hydrogen Energy, 45, 34857-34866, 2020.
  • Balbay A., Selvitepe N., Saka C., Fe doped CoB catalysts with phosphoric acidactivated montmorillonite as support for efficient hydrogen production via NaBH4 hydrolysis, Int. J. Hydrogen Energy, 46, 425-438, 2021.
  • Ekinci A., Cengiz E., Kuncan M., Şahin Ö., Hydrolysis of sodium borohydride solutions both in the presence of NiB catalyst and in the case of microwave application, Int. J. Hydrogen Energy, 45, 34749-34760, 2020.
  • Hansu T.A., Sahin O., Caglar A., Kivrak H., A remarkable Mo doped Ru catalyst for hydrogen generation from sodium borohydride the effect of Mo addition and estimation of kinetic parameters, React. Kinet. Mec. Cat., 131, 661-676, 2020.
  • Zhang H., Zhang L., Rodriguez-Perez I.A., Miao W., Chen K., Wang W., Li Y., Han S., Carbon nanospheres supported bimetallic PtCo as an efficient catalyst for NaBH4 hydrolysis, Appl. Surf. Sci., 540, 148296, 2021.
  • Bilen M., Gürü M., Çakanyildirim Ç., Conversion of KCl into KBH4 by mechano-chemical reaction and its catalytic decomposition, J. Electron. Mater., 46, 4126–4132, 2017.
  • Ar İ., Güler Ö.U., Gürü M., Synthesis and characterization of sodium borohydride and novel catalyst for its dehydrogenation, Int. J. Hydrogen Energ., 43, 20214-20233, 2018.
  • Chen W., Ouyang L.Z., Liu J.W., Yao X.D., Wang H., Liu Z.W., Zhu M., Hydrolysis and regeneration of sodium borohydride (NaBH4) - A combination of hydrogen production and storage, J. Power Sources, 359, 400-407, 2017.
  • Ouyang L., Chen W., Liu J., Felderhoff M., Wang H., Zhu M., Enhancing the regeneration process of consumed NaBH4 for hydrogen storage, Adv. Energy Mater., 7, 1700299 1-8, 2017.
  • Zhong H., Ouyang L.Z., Ye J.S., Liu J.W., Wang H., Yao X.D., Zhu M., An one-step approach towards hydrogen production and storage through regeneration of NaBH4, Energy Storage Mater., 7, 222-228 2017.
  • Arbağ H., Yaşyerli S., Yaşyerli N., Doğu G., Doğu T., Metanın kuru reformlanma reaksiyonunda indirgeme ve reaksiyon sıcaklıklarının mezogözenekli alümina destekli nikel katalizörlerin aktivitelerine ve karbon oluşumuna etkileri, J. Fac. Eng. Archit. Gaz., 33:1, 63-73, 2018.
  • Yuan, H., Wang S., Ma Z., Kundu M., Tang B., Li J., Wang X., Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride, Chem. Eng. J., 404, 126474, 2021.
  • Saka C., Eygi M.S., Balbay A., Cobalt loaded organic acid modified kaolin clay for the enhanced catalytic activity of hydrogen release via hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 46, 3876-3886, 2021.
  • Wang L., Li Z., Zhang Y., Zhang T., Xie G., Hydrogen generation from alkaline NaBH4 solution using electroless-deposited Co-Ni-W-P/ɣ-Al2O3 as catalysts, J. Alloys Compd., 702, 649-658, 2017.
  • Li Z. Wang L., Zhang Y., Xie G., Properties of Cu-Co-P/ɣ-Al2O3 catalysts for efficient hydrogen generation by hydrolysis of alkaline NaBH4 solution, Int. J. Hydrogen Energy, 42, 5749-5757, 2017.
  • Yao Z., Zhao J.Y., Zhao C., Deng S., Zhuang G., Zhong X., Wei Z., Li Y., Wang S., Wang J., A first-principles study of reaction mechanism over Carbon decorated oxygen-deficient TiO2 supported Pd catalyst in direct synthesis of H2O2, Chin. J. Chem. Eng., In press
  • Shen X., Wang Q., Wu Q., Guo S., Zhang Z., Sun Z., Liu B., Wang Z., Zhao B., Ding W., CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution, Energy, 90, 464-474, 2015.
  • Liao J., Feng Y., Lin W., Su X., Ji S., Li L., Zhang W., Pollet B.G., Li H., CuO-NiO/Co3O4 hybrid nanoplates as highly active catalyst for ammonia borane hydrolysis, Int. J. Hydrogen Energy, 45, 8168-8176, 2020.
  • Wang C., Wang H., Wang Z., Li X., Chi Y., Wang M., Gao D., Zhao Z., Mo remarkably enhances catalytic activity of Cu@MoCo core-shell nanoparticles for hydrolytic dehydrogenation of ammonia borane, Int. J. Hydrogen Energy, 43, 7347-7355, 2018.
  • Dai P., Zhao X., Xu D., Wang C., Tao X., Liu X., Gao J., Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor, Int. J. Hydrogen Energy, 44(53), 28463-28470, 2019.
  • Salameh C., Bruma A., Malo S., Demirci U.B., Miele P., Bernard S., Monodisperse platinum nanoparticles supported on highly ordered mesoporous silicon nitride nanoblocks: superior catalytic activity for hydrogen generation from sodium borohydride, RSC Adv. 5, 58943-58951, 2015.
  • Akbayrak S., Özkar S., Inverse relation between the catalytic activity and catalyst concentration for the ruthenium(0) nanoparticles supported on xonotlite nanowire in hydrogen generation from the hydrolysis of sodium borohydride, J. Mol. Catal. A-Chem., 424, 254-260, 2016.
  • Wei Y., Wang Y., Wei L., Zhao X., Zhou X., Liu H., Highly efficient and reactivated electrocatalyst of ruthenium electrodeposited on nickel foam for hydrogen evolution from NaBH4 alkaline solution, Int. J. Hydrogen Energy, 43, 592-600, 2018.
  • Wang H.L., Yan J.M., Wang Z.L., Jiang Q., One-step synthesis of Cu@FeNi core-shell nanoparticles: Highly active catalyst for hydrolytic dehydrogenation of ammonia borane, Int. J. Hydrogen Energy, 37, 10229-10235, 2012.
  • Chang J., Tian H., Du F., Investigation into hydrolysis and alcoholysis of sodium borohydride in ethanol-water solutions in the presence of supported Co-Ce-B catalyst, Int. J. Hydrogen Energy, 39, 13087-13097, 2014.
  • Izgi M.S., Şahin Ö., Saka C., ɣ-Al2O3 supported/Co-Cr-B catalyst for hydrogen evolution via NH3BH3 hydrolysis, Energ Source Part A, 34(14), 1620-1626, 2019.
  • Sehdev N., Medwal R., Annapoorni S., Enhanced phase stabilization of CoPt in the presence of Ag, J. Appl. Phys., 110(3), 033901, 2011.
  • Cao Y., Geng K., Geng H., Ang H., Pei J., Liu Y., Cao X., Zheng J., Gu H., Metal–Oleate Complex Derived Bimetallic Oxides Nanoparticles Encapsulated in 3D Graphene Networks as Anodes for Efcient Lithium Storage with Pseudocapacitance, Nano Micro Lett., 11(15) 1-14, 2019.
  • Huang X., Liu L., Gao H., Dong W., Yang M., Wang G., Hierarchically nanostructured MnCo2O4 as active catalysts for the synthesis of N-benzylideneaniline from benzyl alcohol and aniline, Green Chem., 19, 769-777, 2017.
  • Ansari S.A., Husain Q., Immobilization of Kluyveromyces lactis galactosidase on concanavalin A layered aluminium oxide nanoparticles—Its future aspects in biosensor applications, J. Mol. Catal. B: Enzym., 70, 119–126, 2011.
  • Tian H., Guo Q., Xu D., Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst, J. Power Sources, 195(8), 2136-2142, 2010.
  • Özdemir O.K., Analysis of kinetic properties for the hydrolysis reaction of NaBH4 and environmental effects in the hydrogen production of activated Co-Ti (II) -B alloy catalysts, J. Fac. Eng. Archit. Gaz., 34:3, 1585-1594, 2019.
  • Zou Y.J., Yin Y., Gao Y.B., Xiang C.L., Chu H.L., Qiu S.J., Yan E.H., Xu F., Sun L.X., Chitosan-mediated Co-Ce-B nanoparticles for catalyzing the hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 43, 4912-4921, 2018.
  • Izgi M.S., Sahin O., Odemis O., Saka C., Microwave treatment and fluorine addition on Co-B catalyst to improve the hydrogen production rate, Mater. Manuf. Process., 33, 196-201, 2018.
  • Çakanyıldırım Ç., An effective trimetalic crystalline catalyst for sodium borohydride hydrolysis, Energ source Part A, In press.
  • Zhang H., Xu G., Zhang L., Wang W., Miao W., Chen K., Cheng L., Li Y., Han S., Ultrafine cobalt nanoparticles supported on Carbon nanospheres for hydrolysis of sodium borohydride, Renewable Energy, 162, 345-354, 2020.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Çetin Çakanyıldırım 0000-0001-7040-1369

Metin Gürü 0000-0002-7335-7583

Proje Numarası MUH19001.19.001
Yayımlanma Tarihi 10 Kasım 2021
Gönderilme Tarihi 9 Şubat 2021
Kabul Tarihi 18 Haziran 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Çakanyıldırım, Ç., & Gürü, M. (2021). Farklı destekler ile hazırlanan sentetik Co-Mn-Pt katalizörünün NaBH4 hidroliz performansı ve kinetik değerlendirmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(1), 423-438. https://doi.org/10.17341/gazimmfd.877826
AMA Çakanyıldırım Ç, Gürü M. Farklı destekler ile hazırlanan sentetik Co-Mn-Pt katalizörünün NaBH4 hidroliz performansı ve kinetik değerlendirmesi. GUMMFD. Kasım 2021;37(1):423-438. doi:10.17341/gazimmfd.877826
Chicago Çakanyıldırım, Çetin, ve Metin Gürü. “Farklı Destekler Ile hazırlanan Sentetik Co-Mn-Pt katalizörünün NaBH4 Hidroliz Performansı Ve Kinetik değerlendirmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, sy. 1 (Kasım 2021): 423-38. https://doi.org/10.17341/gazimmfd.877826.
EndNote Çakanyıldırım Ç, Gürü M (01 Kasım 2021) Farklı destekler ile hazırlanan sentetik Co-Mn-Pt katalizörünün NaBH4 hidroliz performansı ve kinetik değerlendirmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 1 423–438.
IEEE Ç. Çakanyıldırım ve M. Gürü, “Farklı destekler ile hazırlanan sentetik Co-Mn-Pt katalizörünün NaBH4 hidroliz performansı ve kinetik değerlendirmesi”, GUMMFD, c. 37, sy. 1, ss. 423–438, 2021, doi: 10.17341/gazimmfd.877826.
ISNAD Çakanyıldırım, Çetin - Gürü, Metin. “Farklı Destekler Ile hazırlanan Sentetik Co-Mn-Pt katalizörünün NaBH4 Hidroliz Performansı Ve Kinetik değerlendirmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/1 (Kasım 2021), 423-438. https://doi.org/10.17341/gazimmfd.877826.
JAMA Çakanyıldırım Ç, Gürü M. Farklı destekler ile hazırlanan sentetik Co-Mn-Pt katalizörünün NaBH4 hidroliz performansı ve kinetik değerlendirmesi. GUMMFD. 2021;37:423–438.
MLA Çakanyıldırım, Çetin ve Metin Gürü. “Farklı Destekler Ile hazırlanan Sentetik Co-Mn-Pt katalizörünün NaBH4 Hidroliz Performansı Ve Kinetik değerlendirmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 37, sy. 1, 2021, ss. 423-38, doi:10.17341/gazimmfd.877826.
Vancouver Çakanyıldırım Ç, Gürü M. Farklı destekler ile hazırlanan sentetik Co-Mn-Pt katalizörünün NaBH4 hidroliz performansı ve kinetik değerlendirmesi. GUMMFD. 2021;37(1):423-38.