Araştırma Makalesi
BibTex RIS Kaynak Göster

Akü sanayi atıksularından kurşunun kapya biberi çekirdekleri kullanılarak biyosorpsiyonla giderimi

Yıl 2022, , 2279 - 2292, 28.02.2022
https://doi.org/10.17341/gazimmfd.892624

Öz

Bu deneysel çalışmada, düşük maliyetli bir biyosorbent olan kapya biberi artığının çekirdek kısmı kullanılarak sentetik ve endüstriyel atıksulardan biyosorpsiyon ile kurşun giderimi gerçekleştirilmiştir. Gerçek atıksulardan kurşun giderimi üzerine literatürde ham kapya biberi çekirdekleri ile yapılmış çalışma bulunmamaktadır. Artık bir materyalin arıtım prosesinde değerlendirilmesi önem taşımakla birlikte elde edilecek sonuçlar ileri ki çalışmalara da ışık tutacaktır. Bu biyosorbent için en uygun arıtım koşullarını belirlemek amacıyla başlangıç pH değerinin, biyosorbent dozunun, arıtma süresinin ve başlangıç kurşun derişiminin arıtım üzerine etkisi incelenmiştir. Biyosorbent herhangi bir ön arıtım uygulanmaksızın kullanılmıştır. Kurşun arıtım çalışmaları için en uygun pH değeri 5 olarak tespit edilmiştir. Maksimum giderim verimi olan %94,46 değeri, 5,4 g/L kuru biyosorbent (125-250 µm boyutunda) kullanılarak elde edilmiştir. Kurşun biyosorpsiyonu verilerinin yalancı-ikinci derece kinetik modeline uyduğu bulunmuştur. Aynı zamanda Weber-Morris modeline göre, hızı sınırlayan adım tek başına partikül içi difüzyon değildir. İzoterm verileri Langmuir izoterm modeline çok daha iyi uyum sağlarken, Freundlich ve Temkin izoterm modelleri yetersiz kalmıştır. Bu biyosorbent için en yüksek biyosorpsiyon kapasitesi 25°C’de 29,67 mg/g olarak bulunmuştur. Akü sanayi atıksuyu ile yürütülen çalışmalarda, gerçek endüstriyel atıksuyun sahip olduğu düşük kurşun derişimi ve kompleks yapısı nedeniyle, gerçek atıksudaki maksimum giderim veriminin (%71) sentetik atıksularda elde edilen verimden daha düşük çıktığı sonucuna varılmıştır.

Destekleyen Kurum

Pamukkale Üniversitesi

Proje Numarası

2014BSP023

Teşekkür

Bu çalışma Pamukkale Üniversitesi tarafından 2014BSP023 proje numarası ile desteklenmiştir.

Kaynakça

  • AlJaberi F.Y., Studies of autocatalytic electrocoagulation reactor for lead removal from simulated wastewater, J. Environ. Chem. Eng., 6 (5), 6069–6078, 2018.
  • Wu H., Wang W., Huang Y., Han G., Yang S., Su S., Sana H., Peng W., Cao Y., Liu J., Comprehensive evaluation on a prospective precipitation-flotation process for metal-ions removal from wastewater simulants, J. Hazard. Mater., 371, 592–602, 2019.
  • Chen Q., Yao Y., Li X., Lu J., Zhou J., Huang Z., Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates, J. Water Process Eng., 26, 289–300, 2018.
  • Landis W.G., Yu M.H., Introduction to Environmental Toxicology: Impacts of Chemicals Upon Ecological Systems, 2nd ed., Lewis Publishers, Boca Raton, A.B.D., 1999.
  • Amarasinghe B.M.W.P.K., Williams R. A., Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater, Chem. Eng. J., 132 (1-3), 299–309, 2007.
  • Zhan X.-M., Zhao X., Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin, Water Res., 37 (16), 3905–3912, 2003.
  • Ihsanullah, Abbas A., Al-Amer A.M., Laoui T., Almarri M., Nasser M.S., Khraisheh M., Atieh M.A., Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications, Sep. Purif. Technol., 157, 141–161, 2015.
  • Macchi G., Pagano M., Santori M., Tiravanti G., Battery industry wastewater: Pb removal and produced sludge, Water Res., 27 (10), 1511–1518, 1993.
  • Oncel M.S., Muhcu A., Demirbas E., Kobya M., A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater, J. Environ. Chem. Eng., 1 (4), 989–995, 2013.
  • Mohammed A.A., Selman H.M., Abukhanafer G., Liquid surfactant membrane for lead separation from aqueous solution: Studies on emulsion stability and extraction efficiency, J. Environ. Chem. Eng., 6 (6), 6923–6930, 2018.
  • Mahar F.K., He L., Wei K., Mehdi M., Zhu M., Gu J., Zhang K., Khatri Z., Kim I., Rapid adsorption of lead ions using porous carbon nanofibers, Chemosphere., 225, 360–367, 2019.
  • Murray A., Örmeci B., Use of polymeric sub-micron ion-exchange resins for removal of lead, copper, zinc, and nickel from natural waters, J. Environ. Sci., 75, 247–254, 2019.
  • RoyChoudhury P., Majumdar S., Sarkar S., Kundu B., Sahoo G.C., Performance investigation of Pb(II) removal by synthesized hydroxyapatite based ceramic ultrafiltration membrane: Bench scale study, Chem. Eng. J., 355, 510–519, 2019.
  • Taşar Ş., Kaya F., Özer A., Biosorption of lead(II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies, J. Environ. Chem. Eng., 2 (2), 1018–1026, 2014.
  • Erdoğan F.O., Kopaç T., Investigation of acetone adsorption characteristics of activated carbons obtained from Zonguldak-Karadon coal at room temperature, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (4), 2211-2224, 2020.
  • İnal İ.I.G., Gökçe Y., Yağmur E., Aktaş Z., Investigation of supercapacitor performance of the biomass based activated carbon modified with nitric acid, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1243-1255, 2020.
  • Kopaç T., Sulu E., Comparison of the adsorption behavior of Basic Red 46 textile dye on various activated carbons obtained from Zonguldak coal, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (3), 1227-1240, 2019.
  • Gök O., Mesutoğlu Ö.Ç., Olive pomace as a low-cost adsorbent for the removal heavy metals, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 507-516, 2017.
  • Amin M.T., Alazba A.A., Shafiq M., Application of biochar derived from date palm biomass for removal of lead and copper ions in a batch reactor: Kinetics and isotherm scrutiny, Chem. Phys. Lett., 722, 64–73, 2019.
  • Bahadir T., Bakan G., Altas L., Buyukgungor H., The investigation of lead removal by biosorption: An application at storage battery industry wastewaters, Enzyme Microb. Technol., 41 (1-2), 98–102, 2007.
  • Heraldy E., Lestari W.W., Permatasari D., Arimurti D.D., Biosorbent from tomato waste and apple juice residue for lead removal, J. Environ. Chem. Eng., 6 (1), 1201–1208, 2018.
  • Wang N., Qiu Y., Xiao T., Wang J., Chen Y., Xu X., Kang Z., Fan L., Yu H., Comparative studies on Pb(II) biosorption with three spongy microbe-based biosorbents: High performance, selectivity and application, J. Hazard. Mater., 373, 39–49, 2019.
  • Tukaram Bai M., Venkateswarlu P., Fixed bed and batch studies on biosorption of lead using Sargassum Tenerrimum powder: Characterization, Kinetics and Thermodynamics, Mater. Today Proc., 5 (9-3), 18024–18037, 2018.
  • Morosanu I., Teodosiu C., Paduraru C., Ibanescu D., Tofan L., Biosorption of lead ions from aqueous effluents by rapeseed biomass, N. Biotechnol., 39 (A), 110–124, 2017.
  • Dissanayake D.M.R.E.A., Wijesinghe W.M.K.E.H., Iqbal S.S., Priyantha N., Iqbal M.C.M., Isotherm and kinetic study on Ni(II) and Pb(II) biosorption by the fern Asplenium nidus L., Ecol. Eng., 88, 237–241, 2016.
  • Filote C., Volf I., Santos S.C.R., Botelho C.M.S., Bioadsorptive removal of Pb(II) from aqueous solution by the biorefinery waste of Fucus spiralis, Sci. Total Environ., 648, 1201–1209, 2019.
  • Martín-Lara M.A., Blázquez G., Ronda A., Rodriguez I.L., Calero M., Multiple biosorption–desorption cycles in a fixed-bed column for Pb(II) removal by acid-treated olive stone, J. Ind. Eng. Chem., 18, 1006–1012, 2012.
  • Abdić Š., Memić M., Šabanović E., Sulejmanović J., Begić S., Adsorptive removal of eight heavy metals from aqueous solution by unmodified and modified agricultural waste: tangerine peel, Int. J. Environ. Sci. Technol., 15, 2511–2518, 2018.
  • Alavi S.A., Zilouei H., Zargoosh K., Asadinezhad A., Yousefi Abdolmaleki A., Surface modification of Nizimuddinia zanardini and Stoechospermum marginatum using 4-phenyl-3-thiosemicarbazide to improve heavy metals biosorption from water, Int. J. Environ. Sci. Technol., 15, 993–1000, 2018.
  • Bdaiwi Ahmed S., Stoica-Guzun A., Kamar F.H., Dobre T., Gudovan D., Busuioc C., Jipa I.M., Ultrasound enhanced removal of lead from wastewater by hazelnut shell: an experimental design methodology, Int. J. Environ. Sci. Technol., 16, 1249–1260, 2019.
  • Tunali Akar S., Gorgulu A., Akar T., Celik S., Decolorization of Reactive Blue 49 contaminated solutions by Capsicum annuum seeds: Batch and continuous mode biosorption applications, Chem. Eng. J., 168 (1), 125–133, 2011.
  • Ozcan A., Ozcan A S., Tunali S., Akar T., Kiran I., Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum., J. Hazard. Mater., 124 (1-3), 200–208, 2005.
  • Özcan A.S., Özcan A., Tunali S., Akar T., Kiran I., Gedikbey T., Adsorption potential of lead(II) ions from aqueous solutions onto Capsicum annuum seeds, Sep. Sci. Technol., 42 (1), 137–151, 2007.
  • Gürel L., Biosorption of textile dye reactive blue 221 by capia pepper (Capsicum annuum L.) seeds, Water Sci. Technol., 75 (8), 1889–1898, 2017.
  • Castillo N.A.M., Ortega E.P., Martinez M.C.R., Ramos R.L., Perez R.O., Alvarez C.C., Single and competitive adsorption of Cd(II) and Pb(II) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste, Sustain. Environ. Res., 27 (2), 61-69, 2017.
  • Han R., Zhang J., Zou W., Shi J., Liu H., Equilibrium biosorption isotherm for lead ion on chaff, J. Hazard. Mater., 125 (1-3), 266–271, 2005.
  • Aktı F., Ünal İ., Investigation of Adsorption Organic Surfactants on the different structure adsorbent coals, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (1), 191-199, 2014.
  • Deniz F., Karaman S., Removal of Basic Red 46 dye from aqueous solution by pine tree leaves, Chem. Eng. J., 170 (1), 67–74, 2011.
  • Akar T., Tosun I., Kaynak Z., Ozkara E., Yeni O., Sahin E.N., Akar S.T., An attractive agro-industrial by-product in environmental cleanup: Dye biosorption potential of untreated olive pomace, J. Hazard. Mater., 166 (2-3), 1217–1225, 2009.
  • Cerit A., Using polyaniline/walnut shell waste composites for removal of methylene blue from wastewater, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (4), 1801-1815, 2021
  • Chen Z., Ma W., Han M., Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models, J. Hazard. Mater., 155 (1-2), 327–333, 2008.
  • Sen Gupta S., Bhattacharyya K.G., Kinetics of adsorption of metal ions on inorganic materials: A review, Adv. Colloid Interface Sci., 162 (1-2), 39–58, 2011.
  • Lagergren S., About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Handl., 24 (4), 1–39, 1898.
  • Ho Y., McKay G., Pseudo-second order model for sorption processes, Process Biochem., 34 (5), 451–465, 1999.
  • Chien S.H., Clayton W.R., Application of Elovich equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J., 44 (2), 265–268, 1980.
  • Weber W.J., Morris J.C., Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (2), 31–60, 1963.
  • Klapiszewski Ł., Siwińska-Stefańska K., Kołodyńska D., Development of lignin based multifunctional hybrid materials for Cu(II) and Cd(II) removal from the aqueous system, Chem. Eng. J., 330, 518–530, 2017.
  • APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 23rd Ed., Washington, DC, USA, 2017.
  • Georgescu A-M., Nardou F., Zichil V., Nistor I.D., Adsorption of lead(II) ions from aqueous solutions onto Cr-pillared clays, Appl. Clay Sci., 152, 44-50, 2018.
  • Akar S.T., Gorgulu A., Anilan B., Kaynak Z., Akar T., Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albus: Batch and dynamic flow studies, J. Hazard. Mater., 165 (1-3), 126–133, 2009.
  • Gupta V.K., Rastogi A., Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—A comparative study, Colloids Surfaces B Biointerfaces, 64 (2), 170–178, 2008.
  • Gong R., Ding Y., Liu H., Chen Q., Liu Z., Lead biosorption and desorption by intact and pretreated spirulina maxima biomass, Chemosphere., 58 (1), 125–130, 2005.
  • Kong Q., He X., Shu L., Miao M., Ofloxacin adsorption by activated carbon derived from luffa sponge: Kinetic, isotherm, and thermodynamic analyses, Process Saf. Environ. Prot., 112 (B), (2017) 254–264, 2017.
  • Yang X., Cui X., Adsorption characteristics of Pb (II) on alkali treated tea residue, Water Resour. Ind., 3, 1–10, 2013.
  • Vimala R., Das N., Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study, J. Hazard. Mater., 168 (1), 376–382, 2009.
  • Selatnia A., Boukazoula A., Kechid N., Bakhti M., Chergui A., Kerchich Y., Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass, Biochem. Eng. J., 19 (2), 127–135, 2004.
  • Abdel -Aty A.M., Ammar N.S., Abdel Ghafar H.H., Ali R.K., Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass, J. Adv. Res., 4 (4), 367–374, 2013.
  • Ojha A.K., Bulasara V.K., Adsorption characteristics of jackfruit leaf powder for the removal of Amido black 10B dye, Environ. Prog. Sustain. Energy., 34 (2), 461–470, 2015.
  • Costa W.D., Bento A.M.S., Araújo J.A.S., Menezes J.M.C., Costa J.G.M., Cunha F.A.B., Coutinho H.D.M., Filho F.J.P., Teixeira R.N.P., Removal of copper(II) ions and lead(II) from aqueous solutions using seeds of Azadirachta indica A. Juss as bioadsorvent, Environ. Res., 183, 109213, 2020.
  • Montazer-Rahmati M.M., Rabbani P., Abdolali A., Keshtkar A.R., Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae, J. Hazard. Mater., 185 (1), 401–407, 2011.
  • Deniz F., Dye removal by almond shell residues: Studies on biosorption performance and process design, Mater. Sci. Eng. C., 33 (5), 2821–2826, 2013.
  • Zhou K., Yang Z., Liu Y., Kong X., Kinetics and equilibrium studies on biosorption of Pb(II) from aqueous solution by a novel biosorbent: Cyclosorus interruptus, J. Environ. Chem. Eng., 3 (3), 2219–2228, 2015.
  • Blázquez G., Martín-Lara M.A., Tenorio G., Calero M., Batch biosorption of lead(II) from aqueous solutions by olive tree pruning waste: Equilibrium, kinetics and thermodynamic study, Chem. Eng. J., 168 (1), 170–177, 2011.
  • Lee L.Y., Chin D.Z.B., Lee X.J., Chemmangattuvalappil N., Gan S., Evaluation of Abelmoschus esculentus (lady’s finger) seed as a novel biosorbent for the removal of Acid Blue 113 dye from aqueous solutions, Process Saf. Environ. Prot., 94, 329–338, 2015.
  • Black R., Sartaj M., Mohammadian A., Qiblawey H.A.M., Biosorption of Pb and Cu using fixed and suspended bacteria, J. Environ. Chem. Eng., 2 (3), 1663–1671, 2014.

Removal of lead from storage battery industry wastewaters by biosorption using capia pepper seeds

Yıl 2022, , 2279 - 2292, 28.02.2022
https://doi.org/10.17341/gazimmfd.892624

Öz

In this experimental study, lead removal from synthetic and industrial wastewaters was carried out by biosorption using the seed part of Capia pepper residual as a low cost biosorbent. There is no study in the literature on lead removal from real wastewaters with raw Capia pepper seeds. Although it is important to evaluate a residual material in the treatment process, the results to be obtained will shed light on future studies. The effects of initial pH, the dose of biosorbent, treatment duration, and initial lead concentration on treatment efficiency were examined to determine the most suitable treatment conditions for this biosorbent. Biosorbent was used without any pre-treatment. The optimum pH was found to be 5 for lead treatment studies. The maximum removal efficiency of 94.46% was obtained by using 5.4 g/L dry biomass (125-250 µm in size). The data of lead biosorption were found to be favorable to the pseudo-second order kinetic model. Also, the rate-limiting step was not only the intraparticle diffusion according to the Weber-Morris model. While the isotherm data fitted very well to the Langmuir isotherm model, the Freundlich and Temkin isotherm models were insufficient. The highest biosorption capacity for this biosorbent was found to be 29.67 mg/g at 25°C. In the studies carried out with storage battery industry wastewater, it was concluded that the maximum removal efficiency (71%) in real wastewater was lower than the efficiency obtained in synthetic wastewater due to the low lead concentration and complex structure of real industrial wastewater.

Proje Numarası

2014BSP023

Kaynakça

  • AlJaberi F.Y., Studies of autocatalytic electrocoagulation reactor for lead removal from simulated wastewater, J. Environ. Chem. Eng., 6 (5), 6069–6078, 2018.
  • Wu H., Wang W., Huang Y., Han G., Yang S., Su S., Sana H., Peng W., Cao Y., Liu J., Comprehensive evaluation on a prospective precipitation-flotation process for metal-ions removal from wastewater simulants, J. Hazard. Mater., 371, 592–602, 2019.
  • Chen Q., Yao Y., Li X., Lu J., Zhou J., Huang Z., Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates, J. Water Process Eng., 26, 289–300, 2018.
  • Landis W.G., Yu M.H., Introduction to Environmental Toxicology: Impacts of Chemicals Upon Ecological Systems, 2nd ed., Lewis Publishers, Boca Raton, A.B.D., 1999.
  • Amarasinghe B.M.W.P.K., Williams R. A., Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater, Chem. Eng. J., 132 (1-3), 299–309, 2007.
  • Zhan X.-M., Zhao X., Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin, Water Res., 37 (16), 3905–3912, 2003.
  • Ihsanullah, Abbas A., Al-Amer A.M., Laoui T., Almarri M., Nasser M.S., Khraisheh M., Atieh M.A., Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications, Sep. Purif. Technol., 157, 141–161, 2015.
  • Macchi G., Pagano M., Santori M., Tiravanti G., Battery industry wastewater: Pb removal and produced sludge, Water Res., 27 (10), 1511–1518, 1993.
  • Oncel M.S., Muhcu A., Demirbas E., Kobya M., A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater, J. Environ. Chem. Eng., 1 (4), 989–995, 2013.
  • Mohammed A.A., Selman H.M., Abukhanafer G., Liquid surfactant membrane for lead separation from aqueous solution: Studies on emulsion stability and extraction efficiency, J. Environ. Chem. Eng., 6 (6), 6923–6930, 2018.
  • Mahar F.K., He L., Wei K., Mehdi M., Zhu M., Gu J., Zhang K., Khatri Z., Kim I., Rapid adsorption of lead ions using porous carbon nanofibers, Chemosphere., 225, 360–367, 2019.
  • Murray A., Örmeci B., Use of polymeric sub-micron ion-exchange resins for removal of lead, copper, zinc, and nickel from natural waters, J. Environ. Sci., 75, 247–254, 2019.
  • RoyChoudhury P., Majumdar S., Sarkar S., Kundu B., Sahoo G.C., Performance investigation of Pb(II) removal by synthesized hydroxyapatite based ceramic ultrafiltration membrane: Bench scale study, Chem. Eng. J., 355, 510–519, 2019.
  • Taşar Ş., Kaya F., Özer A., Biosorption of lead(II) ions from aqueous solution by peanut shells: Equilibrium, thermodynamic and kinetic studies, J. Environ. Chem. Eng., 2 (2), 1018–1026, 2014.
  • Erdoğan F.O., Kopaç T., Investigation of acetone adsorption characteristics of activated carbons obtained from Zonguldak-Karadon coal at room temperature, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (4), 2211-2224, 2020.
  • İnal İ.I.G., Gökçe Y., Yağmur E., Aktaş Z., Investigation of supercapacitor performance of the biomass based activated carbon modified with nitric acid, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (3), 1243-1255, 2020.
  • Kopaç T., Sulu E., Comparison of the adsorption behavior of Basic Red 46 textile dye on various activated carbons obtained from Zonguldak coal, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (3), 1227-1240, 2019.
  • Gök O., Mesutoğlu Ö.Ç., Olive pomace as a low-cost adsorbent for the removal heavy metals, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 507-516, 2017.
  • Amin M.T., Alazba A.A., Shafiq M., Application of biochar derived from date palm biomass for removal of lead and copper ions in a batch reactor: Kinetics and isotherm scrutiny, Chem. Phys. Lett., 722, 64–73, 2019.
  • Bahadir T., Bakan G., Altas L., Buyukgungor H., The investigation of lead removal by biosorption: An application at storage battery industry wastewaters, Enzyme Microb. Technol., 41 (1-2), 98–102, 2007.
  • Heraldy E., Lestari W.W., Permatasari D., Arimurti D.D., Biosorbent from tomato waste and apple juice residue for lead removal, J. Environ. Chem. Eng., 6 (1), 1201–1208, 2018.
  • Wang N., Qiu Y., Xiao T., Wang J., Chen Y., Xu X., Kang Z., Fan L., Yu H., Comparative studies on Pb(II) biosorption with three spongy microbe-based biosorbents: High performance, selectivity and application, J. Hazard. Mater., 373, 39–49, 2019.
  • Tukaram Bai M., Venkateswarlu P., Fixed bed and batch studies on biosorption of lead using Sargassum Tenerrimum powder: Characterization, Kinetics and Thermodynamics, Mater. Today Proc., 5 (9-3), 18024–18037, 2018.
  • Morosanu I., Teodosiu C., Paduraru C., Ibanescu D., Tofan L., Biosorption of lead ions from aqueous effluents by rapeseed biomass, N. Biotechnol., 39 (A), 110–124, 2017.
  • Dissanayake D.M.R.E.A., Wijesinghe W.M.K.E.H., Iqbal S.S., Priyantha N., Iqbal M.C.M., Isotherm and kinetic study on Ni(II) and Pb(II) biosorption by the fern Asplenium nidus L., Ecol. Eng., 88, 237–241, 2016.
  • Filote C., Volf I., Santos S.C.R., Botelho C.M.S., Bioadsorptive removal of Pb(II) from aqueous solution by the biorefinery waste of Fucus spiralis, Sci. Total Environ., 648, 1201–1209, 2019.
  • Martín-Lara M.A., Blázquez G., Ronda A., Rodriguez I.L., Calero M., Multiple biosorption–desorption cycles in a fixed-bed column for Pb(II) removal by acid-treated olive stone, J. Ind. Eng. Chem., 18, 1006–1012, 2012.
  • Abdić Š., Memić M., Šabanović E., Sulejmanović J., Begić S., Adsorptive removal of eight heavy metals from aqueous solution by unmodified and modified agricultural waste: tangerine peel, Int. J. Environ. Sci. Technol., 15, 2511–2518, 2018.
  • Alavi S.A., Zilouei H., Zargoosh K., Asadinezhad A., Yousefi Abdolmaleki A., Surface modification of Nizimuddinia zanardini and Stoechospermum marginatum using 4-phenyl-3-thiosemicarbazide to improve heavy metals biosorption from water, Int. J. Environ. Sci. Technol., 15, 993–1000, 2018.
  • Bdaiwi Ahmed S., Stoica-Guzun A., Kamar F.H., Dobre T., Gudovan D., Busuioc C., Jipa I.M., Ultrasound enhanced removal of lead from wastewater by hazelnut shell: an experimental design methodology, Int. J. Environ. Sci. Technol., 16, 1249–1260, 2019.
  • Tunali Akar S., Gorgulu A., Akar T., Celik S., Decolorization of Reactive Blue 49 contaminated solutions by Capsicum annuum seeds: Batch and continuous mode biosorption applications, Chem. Eng. J., 168 (1), 125–133, 2011.
  • Ozcan A., Ozcan A S., Tunali S., Akar T., Kiran I., Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum., J. Hazard. Mater., 124 (1-3), 200–208, 2005.
  • Özcan A.S., Özcan A., Tunali S., Akar T., Kiran I., Gedikbey T., Adsorption potential of lead(II) ions from aqueous solutions onto Capsicum annuum seeds, Sep. Sci. Technol., 42 (1), 137–151, 2007.
  • Gürel L., Biosorption of textile dye reactive blue 221 by capia pepper (Capsicum annuum L.) seeds, Water Sci. Technol., 75 (8), 1889–1898, 2017.
  • Castillo N.A.M., Ortega E.P., Martinez M.C.R., Ramos R.L., Perez R.O., Alvarez C.C., Single and competitive adsorption of Cd(II) and Pb(II) ions from aqueous solutions onto industrial chili seeds (Capsicum annuum) waste, Sustain. Environ. Res., 27 (2), 61-69, 2017.
  • Han R., Zhang J., Zou W., Shi J., Liu H., Equilibrium biosorption isotherm for lead ion on chaff, J. Hazard. Mater., 125 (1-3), 266–271, 2005.
  • Aktı F., Ünal İ., Investigation of Adsorption Organic Surfactants on the different structure adsorbent coals, Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (1), 191-199, 2014.
  • Deniz F., Karaman S., Removal of Basic Red 46 dye from aqueous solution by pine tree leaves, Chem. Eng. J., 170 (1), 67–74, 2011.
  • Akar T., Tosun I., Kaynak Z., Ozkara E., Yeni O., Sahin E.N., Akar S.T., An attractive agro-industrial by-product in environmental cleanup: Dye biosorption potential of untreated olive pomace, J. Hazard. Mater., 166 (2-3), 1217–1225, 2009.
  • Cerit A., Using polyaniline/walnut shell waste composites for removal of methylene blue from wastewater, Journal of the Faculty of Engineering and Architecture of Gazi University, 36 (4), 1801-1815, 2021
  • Chen Z., Ma W., Han M., Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): Application of isotherm and kinetic models, J. Hazard. Mater., 155 (1-2), 327–333, 2008.
  • Sen Gupta S., Bhattacharyya K.G., Kinetics of adsorption of metal ions on inorganic materials: A review, Adv. Colloid Interface Sci., 162 (1-2), 39–58, 2011.
  • Lagergren S., About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Handl., 24 (4), 1–39, 1898.
  • Ho Y., McKay G., Pseudo-second order model for sorption processes, Process Biochem., 34 (5), 451–465, 1999.
  • Chien S.H., Clayton W.R., Application of Elovich equation to the kinetics of phosphate release and sorption in soils, Soil Sci. Soc. Am. J., 44 (2), 265–268, 1980.
  • Weber W.J., Morris J.C., Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (2), 31–60, 1963.
  • Klapiszewski Ł., Siwińska-Stefańska K., Kołodyńska D., Development of lignin based multifunctional hybrid materials for Cu(II) and Cd(II) removal from the aqueous system, Chem. Eng. J., 330, 518–530, 2017.
  • APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 23rd Ed., Washington, DC, USA, 2017.
  • Georgescu A-M., Nardou F., Zichil V., Nistor I.D., Adsorption of lead(II) ions from aqueous solutions onto Cr-pillared clays, Appl. Clay Sci., 152, 44-50, 2018.
  • Akar S.T., Gorgulu A., Anilan B., Kaynak Z., Akar T., Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albus: Batch and dynamic flow studies, J. Hazard. Mater., 165 (1-3), 126–133, 2009.
  • Gupta V.K., Rastogi A., Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—A comparative study, Colloids Surfaces B Biointerfaces, 64 (2), 170–178, 2008.
  • Gong R., Ding Y., Liu H., Chen Q., Liu Z., Lead biosorption and desorption by intact and pretreated spirulina maxima biomass, Chemosphere., 58 (1), 125–130, 2005.
  • Kong Q., He X., Shu L., Miao M., Ofloxacin adsorption by activated carbon derived from luffa sponge: Kinetic, isotherm, and thermodynamic analyses, Process Saf. Environ. Prot., 112 (B), (2017) 254–264, 2017.
  • Yang X., Cui X., Adsorption characteristics of Pb (II) on alkali treated tea residue, Water Resour. Ind., 3, 1–10, 2013.
  • Vimala R., Das N., Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study, J. Hazard. Mater., 168 (1), 376–382, 2009.
  • Selatnia A., Boukazoula A., Kechid N., Bakhti M., Chergui A., Kerchich Y., Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass, Biochem. Eng. J., 19 (2), 127–135, 2004.
  • Abdel -Aty A.M., Ammar N.S., Abdel Ghafar H.H., Ali R.K., Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass, J. Adv. Res., 4 (4), 367–374, 2013.
  • Ojha A.K., Bulasara V.K., Adsorption characteristics of jackfruit leaf powder for the removal of Amido black 10B dye, Environ. Prog. Sustain. Energy., 34 (2), 461–470, 2015.
  • Costa W.D., Bento A.M.S., Araújo J.A.S., Menezes J.M.C., Costa J.G.M., Cunha F.A.B., Coutinho H.D.M., Filho F.J.P., Teixeira R.N.P., Removal of copper(II) ions and lead(II) from aqueous solutions using seeds of Azadirachta indica A. Juss as bioadsorvent, Environ. Res., 183, 109213, 2020.
  • Montazer-Rahmati M.M., Rabbani P., Abdolali A., Keshtkar A.R., Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae, J. Hazard. Mater., 185 (1), 401–407, 2011.
  • Deniz F., Dye removal by almond shell residues: Studies on biosorption performance and process design, Mater. Sci. Eng. C., 33 (5), 2821–2826, 2013.
  • Zhou K., Yang Z., Liu Y., Kong X., Kinetics and equilibrium studies on biosorption of Pb(II) from aqueous solution by a novel biosorbent: Cyclosorus interruptus, J. Environ. Chem. Eng., 3 (3), 2219–2228, 2015.
  • Blázquez G., Martín-Lara M.A., Tenorio G., Calero M., Batch biosorption of lead(II) from aqueous solutions by olive tree pruning waste: Equilibrium, kinetics and thermodynamic study, Chem. Eng. J., 168 (1), 170–177, 2011.
  • Lee L.Y., Chin D.Z.B., Lee X.J., Chemmangattuvalappil N., Gan S., Evaluation of Abelmoschus esculentus (lady’s finger) seed as a novel biosorbent for the removal of Acid Blue 113 dye from aqueous solutions, Process Saf. Environ. Prot., 94, 329–338, 2015.
  • Black R., Sartaj M., Mohammadian A., Qiblawey H.A.M., Biosorption of Pb and Cu using fixed and suspended bacteria, J. Environ. Chem. Eng., 2 (3), 1663–1671, 2014.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Selahi Güneş 0000-0001-6740-3152

Levent Gürel 0000-0002-4801-2735

Proje Numarası 2014BSP023
Yayımlanma Tarihi 28 Şubat 2022
Gönderilme Tarihi 8 Mart 2021
Kabul Tarihi 30 Aralık 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Güneş, S., & Gürel, L. (2022). Akü sanayi atıksularından kurşunun kapya biberi çekirdekleri kullanılarak biyosorpsiyonla giderimi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(4), 2279-2292. https://doi.org/10.17341/gazimmfd.892624
AMA Güneş S, Gürel L. Akü sanayi atıksularından kurşunun kapya biberi çekirdekleri kullanılarak biyosorpsiyonla giderimi. GUMMFD. Şubat 2022;37(4):2279-2292. doi:10.17341/gazimmfd.892624
Chicago Güneş, Selahi, ve Levent Gürel. “Akü Sanayi atıksularından kurşunun Kapya Biberi çekirdekleri kullanılarak Biyosorpsiyonla Giderimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, sy. 4 (Şubat 2022): 2279-92. https://doi.org/10.17341/gazimmfd.892624.
EndNote Güneş S, Gürel L (01 Şubat 2022) Akü sanayi atıksularından kurşunun kapya biberi çekirdekleri kullanılarak biyosorpsiyonla giderimi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 4 2279–2292.
IEEE S. Güneş ve L. Gürel, “Akü sanayi atıksularından kurşunun kapya biberi çekirdekleri kullanılarak biyosorpsiyonla giderimi”, GUMMFD, c. 37, sy. 4, ss. 2279–2292, 2022, doi: 10.17341/gazimmfd.892624.
ISNAD Güneş, Selahi - Gürel, Levent. “Akü Sanayi atıksularından kurşunun Kapya Biberi çekirdekleri kullanılarak Biyosorpsiyonla Giderimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/4 (Şubat 2022), 2279-2292. https://doi.org/10.17341/gazimmfd.892624.
JAMA Güneş S, Gürel L. Akü sanayi atıksularından kurşunun kapya biberi çekirdekleri kullanılarak biyosorpsiyonla giderimi. GUMMFD. 2022;37:2279–2292.
MLA Güneş, Selahi ve Levent Gürel. “Akü Sanayi atıksularından kurşunun Kapya Biberi çekirdekleri kullanılarak Biyosorpsiyonla Giderimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 37, sy. 4, 2022, ss. 2279-92, doi:10.17341/gazimmfd.892624.
Vancouver Güneş S, Gürel L. Akü sanayi atıksularından kurşunun kapya biberi çekirdekleri kullanılarak biyosorpsiyonla giderimi. GUMMFD. 2022;37(4):2279-92.