Selenizza doğal asfaltının bitümlü bağlayıcının geleneksel ve reolojik özelliklerine etkisi
Yıl 2024,
, 921 - 932, 30.11.2023
Baha Kök
,
Erkut Yalçın
,
Mehmet Yilmaz
,
Barış Büyük
Öz
Bitümlü karışımların özelliklerini iyileştirmek amacıyla genellikle polimer tipi katkı maddeleri kullanılmaktadır. Ancak bu katkıların üretim miktarlarının sınırlı ve maliyetlerinin yüksek olması, daha düşük maliyetli ve doğal malzemelerin katkı olarak kullanımını gündeme getirmektedir. Bu çalışmada bir doğal asfalt tipi olan Selenizza bitümünün bitümlü bağlayıcıların yumuşama noktası, penetrasyon, viskozite, tekerlek izi parametresi, sünme toparlanması ve düşük sıcaklık özelliklerine etkisi araştırılmıştır. Farklı içerikteki Selenizza bitüm katkılı bağlayıcıların düşük ve yüksek sıcaklık performansı saf ve %3 Stiren-butadien-stiren modifiyeli bağlayıcılar ile karşılaştırılmıştır. Sonuç olarak Selenizza modifikasyonunun özellikle yüksek sıcaklığa ve yüksek trafik hacmine sahip bölgelerde saf bağlayıcıya göre önemli derecede performans artışı göstereceği, %15 Selenizza ilavesinin saf bağlayıcının yüksek sıcaklık performans seviyesini bir derece artırdığı ve %3 SBS modifikasyonu ile benzer yüksek sıcaklık performansı sunması için yeterli olduğu ancak düşük sıcaklık bakımından en fazla %7 oranında kullanılması gerektiği tespit edilmiştir.
Kaynakça
- 1. Tayfur S., Ozen H., Aksoy A., Investigation of rutting performance of asphalt mixtures containing polymer modifiers, Constr. Build. Mater., 21, 328–337, 2007. https://doi.org/10.1016/j.conbuildmat.2005.08.014
- 2. Kök B.V., Yılmaz M., Determining the high temperature performance grade and workability of styrene-butadiene-styrene modified bituminous binders according to superpave system, J. Fac. Eng. Archit. Gazi Univ., 23, 811–819, 2008.
- 3. Zhu J., Birgisson B., Kringos N., Polymer modification of bitumen: Advances and challenges, Eur. Polym. J., 54, 18–38, 2014. https://doi.org/10.1016/j.eurpolymj.2014.02.005
- 4. Mota R. V., Kuchiishi A.K., Takahashi M.M., de Souza G., Camargo F.F., Bessa I.S., Vasconcelos K.L., Bernucci L.L.B., Effect of Binder Rheology and Aggregate Gradation on the Permanent Deformation of Asphalt Mixtures, Int. J. Civ. Eng., 2021. https://doi.org/10.1007/s40999-021-00614-y
- 5. Al-Adham K., Baig M.G., Wahhab H.A.-A., Prediction of Dynamic Modulus for Elastomer-Modified Asphalt Concrete Mixes at Desert Environment, Arab. J. Sci. Eng., 44, 4141–4149, 2019. https://doi.org/10.1007/s13369-018-3348-2
- 6. Isacsson U., Lu X., Characterization of Bitumens Modified with SEBS, EVA and EBA polymers, J. Mater. Sci., 34, 3737–3745, 1999. https://doi.org/10.1023/A:1004636329521
- 7. Aglan H., Othman A., Figueroa L., Rollings R., Effect of Styrene-Butadiene-Styrene Block Copolymer on Fatigue Crack Propagation Behavior of Asphalt Concrete Mixtures, Transp. Res. Rec., 178–186, 1993.
- 8. Yildirim Y., Polymer modified asphalt binders, Constr. Build. Mater., 21, 66–72, 2007. https://doi.org/10.1016/j.conbuildmat.2005.07.007
- 9. Arslan D., Gürü M., Çubuk M.K., Improvement of Bitumen and Bituminious Mixtures Performance Properties With Organic Based Zincphosphate Compound, J. Fac. Eng. Archit. Gazi Univ., 27, 459–466, 2012.
- 10. Öcal A., Gürü M., Karacasu M., Nano magnezyum spinel ve kolemanit ile bitümün performans özelliklerinin geliştirilmesi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Derg., 2018. https://doi.org/10.17341/gazimmfd.416397
- 11. Liao M.-C., Chen J.-S., Airey G.D., Wang S.-J., Rheological behavior of bitumen mixed with Trinidad lake asphalt, Constr. Build. Mater., 66, 361–367, 2014. https://doi.org/10.1016/J.CONBUILDMAT.2014.05.068
- 12. He R., Zheng S., Chen H., Kuang D., Investigation of the physical and rheological properties of Trinidad lake asphalt modified bitumen, Constr. Build. Mater., 203, 734–739, 2019. https://doi.org/10.1016/J.CONBUILDMAT.2019.01.120
- 13. Li R., Wang P., Xue B., Pei J., Experimental study on aging properties and modification mechanism of Trinidad lake asphalt modified bitumen, Constr. Build. Mater., 101, 878–883, 2015. https://doi.org/10.1016/j.conbuildmat.2015.10.155
- 14. Huang W.T., Xu G.Y., Anti-Rutting Performance Analysis of Asphalt Mixture with Different Natural Asphalt, Appl. Mech. Mater., 529, 256–259, 2014. https://doi.org/10.4028/www.scientific.net/AMM.529.256
- 15. Jahanian H.R., Shafabakhsh G., Divandari H., Performance evaluation of Hot Mix Asphalt (HMA) containing bitumen modified with Gilsonite, Constr. Build. Mater., 131, 156–164, 2017. https://doi.org/10.1016/j.conbuildmat.2016.11.069
- 16. Babagoli R., Hasaninia M., Mohammad Namazi N., Laboratory evaluation of the effect of gilsonite on the performance of stone matrix asphalt mixtures, Road Mater. Pavement Des., 16, 889–906, 2015. https://doi.org/10.1080/14680629.2015.1042016
- 17. Zhong K., Yang X., Luo S., Performance evaluation of petroleum bitumen binders and mixtures modified by natural rock asphalt from Xinjiang China, Constr. Build. Mater., 154, 623–631, 2017. https://doi.org/10.1016/j.conbuildmat.2017.07.182
- 18. Shi X., Cai L., Xu W., Fan J., Wang X., Effects of nano-silica and rock asphalt on rheological properties of modified bitumen, Constr. Build. Mater., 161, 705–714, 2018. https://doi.org/10.1016/j.conbuildmat.2017.11.162
- 19. Zou G., Wu C., Evaluation of Rheological Properties and Field Applications of Buton Rock Asphalt, J. Test. Eval, 43, 20130205, 2015. https://doi.org/10.1520/JTE20130205
- 20. Yalçın E., Çeloğlu M.E., Akpolat M., Yamaç Ö.E., Alataş T., Kök B.V., Yılmaz M., Effect of gilsonite use on storage stability of styrene-butadiene-styrene modified bitumen, Period. Polytech. Civ. Eng., 63, 2019. https://doi.org/10.3311/PPci.12816
- 21. Hunter R.N., Self A., Read J., The Shell Bitumen Handbook. ICE Publishing, Westminster/London, 2015.
- 22. Meltzer R., Fiorini Y., Horstman R., Moore I., Batik A., McLeod N., Asphalt Cements: Pen-Vis Number and Its Application to Moduli of Stiffnes, J. Test. Eval., 4, 275, 1976. https://doi.org/10.1520/JTE10215J
- 23. Federal Highway Administration Asphalt Pavement Technology Program: The Multiple Stress Creep Recovery (MSCR) Procedure, www.fhwa.dot.gov/pavement/materials/pubs/hif11038/hif11038.pdf
- 24. Marasteanu M.O., Li, X., Clyne T.R., Voller V.R., Timm D.H., Newcomb D.E., Low temperature cracking of asphalt concrete pavements, Minnesota, 2004.
- 25. Liu S., Cao W., Fang J., Shang S., Variance analysis and performance evaluation of different crumb rubber modified (CRM) asphalt, Constr. Build. Mater., 23, 2701–2708, 2009. https://doi.org/10.1016/j.conbuildmat.2008.12.009
- 26. Hou X., Lv S., Chen Z., Xiao F., Applications of Fourier transform infrared spectroscopy technologies on asphalt materials, Measurement, 121, 304–316, 2018. https://doi.org/10.1016/j.measurement.2018.03.001
- 27. Lamontagne J., Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens, Fuel, 80, 483–488, 2001. https://doi.org/10.1016/S0016-2361(00)00121-6
- 28. Yao H., Dai Q., You Z., Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders, Constr. Build. Mater., 101, 1078–1087, 2015. https://doi.org/10.1016/j.conbuildmat.2015.10.085