BibTex RIS Cite

NANOAKIŞKANLARIN ISIL İLETKENLİK VE VİSKOZİTESİNİN DENEYSEL İNCELENMESİ: TANECİK BOYUTU ETKİSİ

Year 2016, Volume: 31 Issue: 1, 0 - 0, 23.03.2016
https://doi.org/10.17341/gummfd.25469

Abstract

Yeni nesil ısı transfer akışkanı olma potansiyeli taşıyan nanoakışkanlar ile ilgili araştırmalar on yılı aşkın bir süre önce başlamasına rağmen, yayınlanan çalışmaların sonuçları arasında birçok tutarsızlık ve çelişkiler mevcuttur. Bunlardan birisi tanecik boyutunun nanoakışkanın ısıl performansına olan etkisidir. Bu çalışmada, 10 nm ve 30 nm tanecik boyutuna sahip Al2O3-su nanoakışkanların, hacimce  % 1, 2, 3 ve 6,33 katkı oranlarında,  ısıl iletkenlik ve viskozite değerleri deneysel olarak belirlenmiş ve elde edilen sonuçlar literatürde yer alan efektif ısıl iletkenlik ve efektif viskozite modelleri ile karşılaştırılmıştır. Isıl iletkenliğin, tanecik boyutu ile ilişkili olmadığı ve deneysel sonuçlarımızın klasik efektif ısıl iletkenlik modellerinden biri olan Maxwell ile uyumlu olduğu gözlenmiştir. Reolojik ölçümler sonucunda, numunelerin Newton tipi akışkan davranışı gösterdikleri ve aynı tanecik katkı oranında, daha büyük tanecik boyutuna sahip numunelerin viskozitelerindeki artış oranının daha yüksek olduğu sonucuna varılmıştır. Klasik efektif viskozite modellerinden Einstein modeli, deneysel sonuçlarımız ile karşılaştırıldığında çok düşük değerlere sahiptir.

References

  • Rudyak, Ya. V., “Viscosity of Nanofluids. Why It Is Not Described by the Classical Theories”, Advances in Nanoparticles, 2, 266-279, 2013.
  • Choi, S. U. S., "Enhancing thermal conductivity of fluids with nanoparticles.", ASME-Publications, 231, 99-106, 1995.
  • Masuda, H., Ebata, A., Teramea, K. ve Hishinuma, N., “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersions of Al2O3, SiO2, and TiO2 ultrafine particles)”, Netsu Bussei, 4, 227-233, 1993.
  • Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. ve Grulke, E. A., “Anomalous thermal conductivity enhancement in nanotube suspensions”, Applied Physics Letters, 79, 14, 2252-2254, 2001.
  • Eastman, J. A., Choi, S. U. S., Li, S., Yu, W. ve Thompson, L. J., “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”, Applied Physics Letters, 78, 6, 718-720, 2001.
  • Buschmann, M. H., “Nanofluids in thermosyphons and heat pipes: Overview of recent experiments and modelling approaches”, International Journal of Thermal Sciences, 72, 1-17, 2013.
  • Sidik, N. A. C., Mohammed, H. A., Alawi, O. A. ve Samion, S., “A review on preparation methods and challenges of nanofluids”, International Communications in Heat and Mass Transfer, 54, 115-125, 2014.
  • Haddad, Z., Abid, C., Oztop, H. F. ve Mataoui, A., “A review on how the researchers prepare their nanofluids”, International Journal of Thermal Sciences, 76, 168-189, 2014.
  • Salman, B. H., Mohammed, H. A., Munisamy, K. M. ve Kherbeet, A. S., “Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review”, Renewable and Sustainable Energy Reviews, 28, 848-880, 2013.
  • Sureshkumar, R., Mohideen, S. T. ve Nethaji, N., “Heat transfer characteristics of nanofluids in heat pipes: A review”, Renewable and Sustainable Energy Reviews, 20, 397-410, 2013.
  • Mahian, O., Kianifar, A., Kalogirou, S. A., Pop, I. ve Wongwises, S., “A review of the applications of nanofluids in solar energy”, International Journal of Heat and Mass Transfer, 57, 2, 582-594, 2013.
  • Huminic, G. ve Huminic, A., “Application of nanofluids in heat exchangers: a review”, Renewable and Sustainable Energy Reviews, 16, 8, 5625-5638, 2012.
  • Dalkilic, A. S., Kayaci, N., Celen, A., Tabatabaei, M., Yildiz, O., Daungthongsuk, W. ve Wongwises, S., “Forced convective heat transfer of nanofluids-A review of the recent literature”, Current Nanoscience, 8, 6, 949-969, 2012.
  • Haddad, Z., Oztop, H. F., Abu-Nada, E. ve Mataoui, A., “A review on natural convective heat transfer of nanofluids”, Renewable and Sustainable Energy Reviews, 16, 7, 5363-5378, 2012.
  • Khodadadi, J. M., Fan, L. ve Babaei, H., "Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review", Renewable and Sustainable Energy Reviews, 24, 418-444, 2013.
  • Nkurikiyimfura, I., Wang, Y. ve Pan, Z., “ Heat transfer enhancement by magnetic nanofluids-A review”, Renewable and Sustainable Energy Reviews, 21, 548-561, 2013.
  • Elçioğlu, E. B., Yazıcıoğlu, A. G. ve Kakaç, S., “Nanoakışkan viskozitesinin karşılaştırmalı değerlendirmesi”, Journal Of Thermal Science & Technology, 34, 1, 137-151,2014.
  • Ilyas, S. U., Pendyala, R., Shuib, A. S. ve Marneni, N., “A review on the viscous and thermal transport properties of nanofluids”, Advanced Materials Research, 917, 18-27, 2014.
  • Lee, J. H., Lee S. H. ve Jang S. P., "Do temperature and nanoparticle size affect the thermal conductivity of alumina nanofluids?", Applied Physics Letters, 104, 16, 161908, 2014.
  • Kwek, D., Crivoi, A. ve Duan, F., “Effects of temperature and particle size on the thermal property measurements of Al2O3−water nanofluids”, Journal of Chemical & Engineering Data, 55, 12, 5690-5695, 2010.
  • Beydokhti, A. K., Heris, S. Z., Moghadam M. N., Niasar S. ve Hamidi A., “Experimental investıgation of parameters affecting nanofluid effective thermal conductivity ”, Chemical Engineering Communications, 201, 593–611, 2014.
  • Kim, S. H., Choi, S. R. ve Kim, D., “Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation”, Journal of Heat Transfer, 129, 3, 298-307, 2007.
  • Li, C. H. ve Peterson, G. P., “The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids”, Journal of Applied Physics, 101, 4, 044312, 2007.
  • El-Brolossy, T. A. ve Saber, O., “Non-intrusive method for thermal properties measurement of nanofluids”, Experimental Thermal and Fluid Science, 44, 498-503, 2013.
  • Warrier, P. ve Teja, A., “Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles”, Nanoscale Research Letters, 6, 1, 1-6, 2011.
  • Beck, M. P., Yuan, Y., Warrier, P. ve Teja, A. S., “The effect of particle size on the thermal conductivity of alumina nanofluids”, Journal of Nanoparticle Research, 11, 5, 1129-1136, 2009.
  • Chen, G., Yu, W., Singh, D., Cookson, D. ve Routbort, J., “Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids”, Journal of Nanoparticle Research, 10, 7, 1109-1114, 2008.
  • Shanker, N. S., Reddy, M. C. S. ve Rao, V. B., “On prediction of viscosity of nanofluids for low volume fractions of nanoparticles”, International Journal of Engineering Research and Technology, 1, 8, 1-10, 2012.
  • Pastoriza-Gallego, M. J., Casanova, C., Legido, J. L. ve Piñeiro, M. M., “CuO in water nanofluid: influence of particle size and polydispersity on volumetric behaviour and viscosity”, Fluid Phase Equilibria, 300, 1, 188-196, 2011.
  • Namburu, P. K., Kulkarni, D. P., Dandekar, A. ve Das, D. K., “Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids”, Micro and Nano Letters, 2, 67–71, 2007.
  • Chevalier, J., Tillement, O. ve Ayela, F., “Rheological properties of nanofluids flowing through microchannels”, Applied Physics Letters, 9, 1, 233103, 2007.
  • Nguyen, C. T., Desgranges, F., Galanis, N., Roy, G., Maré, T., Boucher, S. ve Angue Mintsa, H., “Viscosity data for Al2O3-water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable”, International Journal of Thermal Sciences, 47, 2, 103-111, 2008.
  • Prasher, R., Song, D., Wang, J. ve Phelan, P., “Measurements of nanofluid viscosity and its implications for thermal applications”, Applied Physics Letters, 89, 13, 133108, 2006.
  • Elçioğlu, E.B., Experimental and theoretical investigations on alumina-water nanofluid viscosity with statistical analysis, Master Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2013.
  • Timofeeva, E. V., Smith, D. S., Yu, W., France, D. M., Singh, D. ve Routbort, J. L, “Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids”, Nanotechnology, 21, 21, 215703, 2010.
  • Anoop, K. B., Sundararajan, T. ve Das, S. K., “Effect of particle size on the convective heat transfer in nanofluid in the developing region”, International Journal of Heat and Mass Transfer, 52, 9, 2189-2195, 2009.
  • He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D. ve Lu, H., “Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe”, International Journal of Heat and Mass Transfer, 50, 11, 2272-2281, 2007.
  • Lu, W. Q. ve Fan, Q. M., “Study for the particle's scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method”, Engineering analysis with boundary elements, 32, 4, 282-289, 2008.
  • Davarnejad, R., Barati, S. ve Kooshki, M., “CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube”, SpringerPlus, 2, 1, 1-6, 2013.
  • Ji, Y., Ma, H., Su, F., ve Wang, G., “Particle size effect on heat transfer performance in an oscillating heat pipe”, Experimental Thermal and Fluid Science, 35, 4, 724-727, 2011.
  • Tavman, I., Turgut, A., Chirtoc, M., Hadjov, K., Fudym, O. ve Tavman, S., “Experimental study on thermal conductivity and viscosity of water-based nanofluids”, Heat Transfer Research, 41, 3, 339-351, 2010.
  • Cahill, D. G., “Thermal conductivity measurement from 30 to 750 K: the 3ω method”, Review of Scientific Instruments, 61, 2, 802-808, 1990.
  • Wang, Z. L., Tang, D. W., Liu, S., Zheng, X. H. ve Araki, N., “Thermal-conductivity and thermal-diffusivity measurements of nanofluids by 3ω method and mechanism analysis of heat transport”, International Journal of Thermophysics, 28, 4, 1255-1268, 2007.
  • Turgut, A., Sauter, C., Chirtoc, M., Henry, J. F., Tavman, S., Tavman, I. ve Pelzl, J., “AC hot wire measurement of thermophysical properties of nanofluids with 3ω method”, The European Physical Journal-Special Topics, 153, 1, 349-352, 2008.
  • Oh, D. W., Kwon, O. ve Lee, J. S., “Transient thermal conductivity and colloidal stability measurements of nanofluids by using the 3omega method”, Journal of Nanoscience and Nanotechnology, 8, 10, 4923, 2008.
  • Dames, C. ve Chen, G., “1ω, 2ω, and 3ω methods for measurements of thermal properties”, Review of Scientific Instruments, 76, 12, 124902, 2005.
  • Turgut, A., Tavman, I., Chirtoc, M., Schuchmann, H. P., Sauter, C. ve Tavman, S., “Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids”, International Journal of Thermophysics, 30, 4, 1213-1226, 2009.
  • Tavman, I., ve Turgut, A., “An investigation on thermal conductivity and viscosity of water based nanofluids", Microfluidics Based Microsystems, 0, 139-162, 2010.
  • Turgut, A., Tavman, I. ve Bakan, F., “Bor Nitrür-Su nanoakışkanın ısıl iletkenliğinin 3w yöntemi ile belirlenmesi”, 18. Ulusal Isı Bilimi ve Tekniği Kongresi, Zonguldak, 07-10 Eylül 2011.
  • Özerinç, S., Kakaç, S. ve Yazıcıoğlu, A. G., “Enhanced thermal conductivity of nanofluids: a state-of-the-art review”, Microfluidics and Nanofluidics, 8, 2, 145-170, 2010.
  • Maxwell, J. C., “A Treatise on Electricity and Magnetism”, 1, Clarendon Press, İngiltere, 1873.
  • Mahbubul, I. M., Saidur, R. ve Amalina, M. A., “Latest developments on the viscosity of nanofluids”, International Journal of Heat and Mass Transfer, 55, 4, 874-885, 2012.
  • Einstein, A., “Eine neue bestimmung der moleküldimensionen”, Annalender Physik, 19, 289–306, 1906.
  • Williams, W.C., Buongiorno, J. ve Hu, L.V., “Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids”, International Journal of Heat and Mass Transfer, 130, 042412, 2008.
  • Chandrasekar, M., Suresh, S. ve Chandra Bose, A., “Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid”, Experimental Thermal and Fluid Science, 34, 2, 210-216, 2010.
  • R.L. Fullman, “Measurement of particle sizes in opaque bodies”, Journal of Metals, 5, 1447–1452.
  • De Noni Jr, A., Daniel, G.E., and Dachamir, H., “A modified model for the viscosity of ceramic suspensions”, Ceramics International, 28, 731-735, 2002.
Year 2016, Volume: 31 Issue: 1, 0 - 0, 23.03.2016
https://doi.org/10.17341/gummfd.25469

Abstract

References

  • Rudyak, Ya. V., “Viscosity of Nanofluids. Why It Is Not Described by the Classical Theories”, Advances in Nanoparticles, 2, 266-279, 2013.
  • Choi, S. U. S., "Enhancing thermal conductivity of fluids with nanoparticles.", ASME-Publications, 231, 99-106, 1995.
  • Masuda, H., Ebata, A., Teramea, K. ve Hishinuma, N., “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersions of Al2O3, SiO2, and TiO2 ultrafine particles)”, Netsu Bussei, 4, 227-233, 1993.
  • Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. ve Grulke, E. A., “Anomalous thermal conductivity enhancement in nanotube suspensions”, Applied Physics Letters, 79, 14, 2252-2254, 2001.
  • Eastman, J. A., Choi, S. U. S., Li, S., Yu, W. ve Thompson, L. J., “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”, Applied Physics Letters, 78, 6, 718-720, 2001.
  • Buschmann, M. H., “Nanofluids in thermosyphons and heat pipes: Overview of recent experiments and modelling approaches”, International Journal of Thermal Sciences, 72, 1-17, 2013.
  • Sidik, N. A. C., Mohammed, H. A., Alawi, O. A. ve Samion, S., “A review on preparation methods and challenges of nanofluids”, International Communications in Heat and Mass Transfer, 54, 115-125, 2014.
  • Haddad, Z., Abid, C., Oztop, H. F. ve Mataoui, A., “A review on how the researchers prepare their nanofluids”, International Journal of Thermal Sciences, 76, 168-189, 2014.
  • Salman, B. H., Mohammed, H. A., Munisamy, K. M. ve Kherbeet, A. S., “Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review”, Renewable and Sustainable Energy Reviews, 28, 848-880, 2013.
  • Sureshkumar, R., Mohideen, S. T. ve Nethaji, N., “Heat transfer characteristics of nanofluids in heat pipes: A review”, Renewable and Sustainable Energy Reviews, 20, 397-410, 2013.
  • Mahian, O., Kianifar, A., Kalogirou, S. A., Pop, I. ve Wongwises, S., “A review of the applications of nanofluids in solar energy”, International Journal of Heat and Mass Transfer, 57, 2, 582-594, 2013.
  • Huminic, G. ve Huminic, A., “Application of nanofluids in heat exchangers: a review”, Renewable and Sustainable Energy Reviews, 16, 8, 5625-5638, 2012.
  • Dalkilic, A. S., Kayaci, N., Celen, A., Tabatabaei, M., Yildiz, O., Daungthongsuk, W. ve Wongwises, S., “Forced convective heat transfer of nanofluids-A review of the recent literature”, Current Nanoscience, 8, 6, 949-969, 2012.
  • Haddad, Z., Oztop, H. F., Abu-Nada, E. ve Mataoui, A., “A review on natural convective heat transfer of nanofluids”, Renewable and Sustainable Energy Reviews, 16, 7, 5363-5378, 2012.
  • Khodadadi, J. M., Fan, L. ve Babaei, H., "Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review", Renewable and Sustainable Energy Reviews, 24, 418-444, 2013.
  • Nkurikiyimfura, I., Wang, Y. ve Pan, Z., “ Heat transfer enhancement by magnetic nanofluids-A review”, Renewable and Sustainable Energy Reviews, 21, 548-561, 2013.
  • Elçioğlu, E. B., Yazıcıoğlu, A. G. ve Kakaç, S., “Nanoakışkan viskozitesinin karşılaştırmalı değerlendirmesi”, Journal Of Thermal Science & Technology, 34, 1, 137-151,2014.
  • Ilyas, S. U., Pendyala, R., Shuib, A. S. ve Marneni, N., “A review on the viscous and thermal transport properties of nanofluids”, Advanced Materials Research, 917, 18-27, 2014.
  • Lee, J. H., Lee S. H. ve Jang S. P., "Do temperature and nanoparticle size affect the thermal conductivity of alumina nanofluids?", Applied Physics Letters, 104, 16, 161908, 2014.
  • Kwek, D., Crivoi, A. ve Duan, F., “Effects of temperature and particle size on the thermal property measurements of Al2O3−water nanofluids”, Journal of Chemical & Engineering Data, 55, 12, 5690-5695, 2010.
  • Beydokhti, A. K., Heris, S. Z., Moghadam M. N., Niasar S. ve Hamidi A., “Experimental investıgation of parameters affecting nanofluid effective thermal conductivity ”, Chemical Engineering Communications, 201, 593–611, 2014.
  • Kim, S. H., Choi, S. R. ve Kim, D., “Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation”, Journal of Heat Transfer, 129, 3, 298-307, 2007.
  • Li, C. H. ve Peterson, G. P., “The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids”, Journal of Applied Physics, 101, 4, 044312, 2007.
  • El-Brolossy, T. A. ve Saber, O., “Non-intrusive method for thermal properties measurement of nanofluids”, Experimental Thermal and Fluid Science, 44, 498-503, 2013.
  • Warrier, P. ve Teja, A., “Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles”, Nanoscale Research Letters, 6, 1, 1-6, 2011.
  • Beck, M. P., Yuan, Y., Warrier, P. ve Teja, A. S., “The effect of particle size on the thermal conductivity of alumina nanofluids”, Journal of Nanoparticle Research, 11, 5, 1129-1136, 2009.
  • Chen, G., Yu, W., Singh, D., Cookson, D. ve Routbort, J., “Application of SAXS to the study of particle-size-dependent thermal conductivity in silica nanofluids”, Journal of Nanoparticle Research, 10, 7, 1109-1114, 2008.
  • Shanker, N. S., Reddy, M. C. S. ve Rao, V. B., “On prediction of viscosity of nanofluids for low volume fractions of nanoparticles”, International Journal of Engineering Research and Technology, 1, 8, 1-10, 2012.
  • Pastoriza-Gallego, M. J., Casanova, C., Legido, J. L. ve Piñeiro, M. M., “CuO in water nanofluid: influence of particle size and polydispersity on volumetric behaviour and viscosity”, Fluid Phase Equilibria, 300, 1, 188-196, 2011.
  • Namburu, P. K., Kulkarni, D. P., Dandekar, A. ve Das, D. K., “Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids”, Micro and Nano Letters, 2, 67–71, 2007.
  • Chevalier, J., Tillement, O. ve Ayela, F., “Rheological properties of nanofluids flowing through microchannels”, Applied Physics Letters, 9, 1, 233103, 2007.
  • Nguyen, C. T., Desgranges, F., Galanis, N., Roy, G., Maré, T., Boucher, S. ve Angue Mintsa, H., “Viscosity data for Al2O3-water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable”, International Journal of Thermal Sciences, 47, 2, 103-111, 2008.
  • Prasher, R., Song, D., Wang, J. ve Phelan, P., “Measurements of nanofluid viscosity and its implications for thermal applications”, Applied Physics Letters, 89, 13, 133108, 2006.
  • Elçioğlu, E.B., Experimental and theoretical investigations on alumina-water nanofluid viscosity with statistical analysis, Master Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2013.
  • Timofeeva, E. V., Smith, D. S., Yu, W., France, D. M., Singh, D. ve Routbort, J. L, “Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids”, Nanotechnology, 21, 21, 215703, 2010.
  • Anoop, K. B., Sundararajan, T. ve Das, S. K., “Effect of particle size on the convective heat transfer in nanofluid in the developing region”, International Journal of Heat and Mass Transfer, 52, 9, 2189-2195, 2009.
  • He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D. ve Lu, H., “Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe”, International Journal of Heat and Mass Transfer, 50, 11, 2272-2281, 2007.
  • Lu, W. Q. ve Fan, Q. M., “Study for the particle's scale effect on some thermophysical properties of nanofluids by a simplified molecular dynamics method”, Engineering analysis with boundary elements, 32, 4, 282-289, 2008.
  • Davarnejad, R., Barati, S. ve Kooshki, M., “CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube”, SpringerPlus, 2, 1, 1-6, 2013.
  • Ji, Y., Ma, H., Su, F., ve Wang, G., “Particle size effect on heat transfer performance in an oscillating heat pipe”, Experimental Thermal and Fluid Science, 35, 4, 724-727, 2011.
  • Tavman, I., Turgut, A., Chirtoc, M., Hadjov, K., Fudym, O. ve Tavman, S., “Experimental study on thermal conductivity and viscosity of water-based nanofluids”, Heat Transfer Research, 41, 3, 339-351, 2010.
  • Cahill, D. G., “Thermal conductivity measurement from 30 to 750 K: the 3ω method”, Review of Scientific Instruments, 61, 2, 802-808, 1990.
  • Wang, Z. L., Tang, D. W., Liu, S., Zheng, X. H. ve Araki, N., “Thermal-conductivity and thermal-diffusivity measurements of nanofluids by 3ω method and mechanism analysis of heat transport”, International Journal of Thermophysics, 28, 4, 1255-1268, 2007.
  • Turgut, A., Sauter, C., Chirtoc, M., Henry, J. F., Tavman, S., Tavman, I. ve Pelzl, J., “AC hot wire measurement of thermophysical properties of nanofluids with 3ω method”, The European Physical Journal-Special Topics, 153, 1, 349-352, 2008.
  • Oh, D. W., Kwon, O. ve Lee, J. S., “Transient thermal conductivity and colloidal stability measurements of nanofluids by using the 3omega method”, Journal of Nanoscience and Nanotechnology, 8, 10, 4923, 2008.
  • Dames, C. ve Chen, G., “1ω, 2ω, and 3ω methods for measurements of thermal properties”, Review of Scientific Instruments, 76, 12, 124902, 2005.
  • Turgut, A., Tavman, I., Chirtoc, M., Schuchmann, H. P., Sauter, C. ve Tavman, S., “Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids”, International Journal of Thermophysics, 30, 4, 1213-1226, 2009.
  • Tavman, I., ve Turgut, A., “An investigation on thermal conductivity and viscosity of water based nanofluids", Microfluidics Based Microsystems, 0, 139-162, 2010.
  • Turgut, A., Tavman, I. ve Bakan, F., “Bor Nitrür-Su nanoakışkanın ısıl iletkenliğinin 3w yöntemi ile belirlenmesi”, 18. Ulusal Isı Bilimi ve Tekniği Kongresi, Zonguldak, 07-10 Eylül 2011.
  • Özerinç, S., Kakaç, S. ve Yazıcıoğlu, A. G., “Enhanced thermal conductivity of nanofluids: a state-of-the-art review”, Microfluidics and Nanofluidics, 8, 2, 145-170, 2010.
  • Maxwell, J. C., “A Treatise on Electricity and Magnetism”, 1, Clarendon Press, İngiltere, 1873.
  • Mahbubul, I. M., Saidur, R. ve Amalina, M. A., “Latest developments on the viscosity of nanofluids”, International Journal of Heat and Mass Transfer, 55, 4, 874-885, 2012.
  • Einstein, A., “Eine neue bestimmung der moleküldimensionen”, Annalender Physik, 19, 289–306, 1906.
  • Williams, W.C., Buongiorno, J. ve Hu, L.V., “Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids”, International Journal of Heat and Mass Transfer, 130, 042412, 2008.
  • Chandrasekar, M., Suresh, S. ve Chandra Bose, A., “Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid”, Experimental Thermal and Fluid Science, 34, 2, 210-216, 2010.
  • R.L. Fullman, “Measurement of particle sizes in opaque bodies”, Journal of Metals, 5, 1447–1452.
  • De Noni Jr, A., Daniel, G.E., and Dachamir, H., “A modified model for the viscosity of ceramic suspensions”, Ceramics International, 28, 731-735, 2002.
There are 57 citations in total.

Details

Journal Section Makaleler
Authors

Alpaslan Turgut

Şahika Sağlanmak This is me

Serkan Doğanay This is me

Publication Date March 23, 2016
Submission Date November 17, 2014
Published in Issue Year 2016 Volume: 31 Issue: 1

Cite

APA Turgut, A., Sağlanmak, Ş., & Doğanay, S. (2016). NANOAKIŞKANLARIN ISIL İLETKENLİK VE VİSKOZİTESİNİN DENEYSEL İNCELENMESİ: TANECİK BOYUTU ETKİSİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 31(1). https://doi.org/10.17341/gummfd.25469
AMA Turgut A, Sağlanmak Ş, Doğanay S. NANOAKIŞKANLARIN ISIL İLETKENLİK VE VİSKOZİTESİNİN DENEYSEL İNCELENMESİ: TANECİK BOYUTU ETKİSİ. GUMMFD. March 2016;31(1). doi:10.17341/gummfd.25469
Chicago Turgut, Alpaslan, Şahika Sağlanmak, and Serkan Doğanay. “NANOAKIŞKANLARIN ISIL İLETKENLİK VE VİSKOZİTESİNİN DENEYSEL İNCELENMESİ: TANECİK BOYUTU ETKİSİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 31, no. 1 (March 2016). https://doi.org/10.17341/gummfd.25469.
EndNote Turgut A, Sağlanmak Ş, Doğanay S (March 1, 2016) NANOAKIŞKANLARIN ISIL İLETKENLİK VE VİSKOZİTESİNİN DENEYSEL İNCELENMESİ: TANECİK BOYUTU ETKİSİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 31 1
IEEE A. Turgut, Ş. Sağlanmak, and S. Doğanay, “NANOAKIŞKANLARIN ISIL İLETKENLİK VE VİSKOZİTESİNİN DENEYSEL İNCELENMESİ: TANECİK BOYUTU ETKİSİ”, GUMMFD, vol. 31, no. 1, 2016, doi: 10.17341/gummfd.25469.
ISNAD Turgut, Alpaslan et al. “NANOAKIŞKANLARIN ISIL İLETKENLİK VE VİSKOZİTESİNİN DENEYSEL İNCELENMESİ: TANECİK BOYUTU ETKİSİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 31/1 (March 2016). https://doi.org/10.17341/gummfd.25469.
JAMA Turgut A, Sağlanmak Ş, Doğanay S. NANOAKIŞKANLARIN ISIL İLETKENLİK VE VİSKOZİTESİNİN DENEYSEL İNCELENMESİ: TANECİK BOYUTU ETKİSİ. GUMMFD. 2016;31. doi:10.17341/gummfd.25469.
MLA Turgut, Alpaslan et al. “NANOAKIŞKANLARIN ISIL İLETKENLİK VE VİSKOZİTESİNİN DENEYSEL İNCELENMESİ: TANECİK BOYUTU ETKİSİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 31, no. 1, 2016, doi:10.17341/gummfd.25469.
Vancouver Turgut A, Sağlanmak Ş, Doğanay S. NANOAKIŞKANLARIN ISIL İLETKENLİK VE VİSKOZİTESİNİN DENEYSEL İNCELENMESİ: TANECİK BOYUTU ETKİSİ. GUMMFD. 2016;31(1).