BibTex RIS Cite

Radyal Havalı Yataklarda Basınç Dağılımının Nümerik Analizinde Çözüm Parametrelerinin ve Silindirik Grid Birleşiminin Etkileri

Year 2017, Volume: 32 Issue: 1, 0 - 0, 23.03.2017
https://doi.org/10.17341/gazimmfd.300607

Abstract

Basınçlı hava yatakları ile desteklenmiş yatak-rotor sisteminde, yatak ve rotor arasındaki havanın akışı yatak-rotor sisteminin dinamiğini doğrudan etkilemektedir. Bu akışın modellenmesi ve modelin çözümü basınçlı hava yatakları için oldukça önemlidir. Havanın akışı Reynold’s denklemi ile modellenmekte ve nümerik çözüm metotları kullanılarak yatak ve rotor arasındaki basınç dağılımları hesaplanmaktadır. Basınç dağılımının elde edilmesi için kullanılan yöntemlerden bir tanesi de Değişen Yönlü Kapalı Nümerik İntegrasyon yöntemidir. Ancak bu metotta özellikle yatak ve rotor arasındaki boşluk miktarının artması (c>100 µm) ile birlikte ıraksama problemleri ortaya çıkmaktadır. Bu çalışmada, büyük boşluk değerlerine sahip basınçlı hava yatakları için (c=250 µm'ye kadar) zaman adımı, grid boyutları ve yakınsama kriteri gibi nümerik çözüm parametrelerinin ve silindirik grid birleşiminin yatak ve rotor arasındaki basınç dağılımına etkileri araştırılmıştır.

References

  • Fuller D. D., A review of research in the field of gas-lubricated bearings, NASA Report, 2429, USA, 5-50, 1970.
  • Uneeb M., Theoretical Investigation of Whirl Instability In Externally Pressurized Gas Journal Bearings, PhD Thesis, Imperial College of Science, Techgnologyand Medicine, London, UK, 29-92, 1992.
  • Ausman J. S., The fluid dynamic theory of gas lubricated bearing, Trans. Amer. Soc. Lub., Engrs., 79 (6), 1218-1224, 1957.
  • Gross W. A., Investigation of whirl in externally pressurized air-lubricated journal bearings, Trans. Amer. Soc. Mech. Engr. J. Basic Eng., 84, 132-140, 1962.
  • Heinrich G., The theory of the externally pressurized bearings, 1st International Symposium on Gas-Lubricated Bearing, USA, 42, 1959.
  • Wang J., Design of Gas Bearing Systems for Precision Applications, PhD. Thesis, Technische Universiteit, Eindhoven, 1-35, 1993.
  • Lund J. W., A theoretical analysis of whirl instability and pneumatic hammer for a rigid rotor in pressurized gas journal bearing, An International Journal on the Science and Technology of Friction, Lubrication and Wear,12 (2), 154-166, 1967.
  • Xu C., and Jiang, S. Dynamic Analysis of a Motorized Spindle With Externally Pressurized Air Bearings, Journal of Vibration and Acoustics, 137 (4), 041001, 2015.
  • Du J., Zhang G., Liu T., To S., Improvement on load performance of externally pressurized gas journal bearings by openning pressure-equalizing grooves, Tribology International, 73 (May 2014), 156-166, 2014.
  • Charki A., Diop K., Champmartin S., Ambari A. Numerical simulation and experimental study of thrust air bearings with multiple orifices, International Journal of Mechanical Sciences, 72, 28-38, 2013.
  • Gao S, Cheng K., Chen S., Ding H and Fu H., Computational design and analysis of aerostatic journal bearing with application to ultra-high speed spindles, Proc. of the Inst. of Mech. Eng., Part C: Journal of Mechanical Engineering Science, 095440621663934, 2016.
  • Wang X., Xu Q., Wang B., Zhang L., Yang H., and Peng Z., Effects of surface waviness on the static performance of aerostatic journal bearing, Tribology International, 103, 394-405, 2016.
  • Wang C., Yau H., Theoretical analysis of high speed spindle air bearings by a hybrid numerical method, Applied Mathematics and Computation, 217 (5), 2084-2096, 2010.
  • Bilgili M., and Sivrioğlu M., Pem Yakıt Pilinin Değişik Membran Elektrot Çifti Kalınlıklarında Ve Farklı Çalışma Basıncı Koşullarında Üç Boyutlu Sayısal Analizi-3d Numerıcal Analysıs Of Pem Fuel Cell At Dıfferent Mea Thıcknesses And Operatıng Pressure Condıtıons, Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi / Journal of the Faculty of Engineering & Architecture of Gazi University, 31 (1), 51-63, 2016.
  • Chang S.H., Chan, C.W. and Jeng, Y.R., Numerical analysis of discharge coefficients in aerostatic bearings with orifice-type restrictors, Tribology International, 90 (October 2015),157-163, 2015.
  • Czolczynski, K., “Rotordynamics of Gas-Lubricated Journal Bearing Systems”, Ling, F. F., Winer, W. O., Springer, NewYork, 1-48 (1999).
  • Piekos E. S., Numerical Simulation of Gas- Lubricated Journal Bearings For Microfabricated Machines, PhD. Thesis, Department of Aeronautics and Astronautics Massachusetts Instıtute Of Technology, Boston, 15-108, 2000.
  • Wang C. Application of a hybrid method to the nonlinear dynamic analysis of a flexible rotor supported by a spherical gas-lubricated bearing system, Nonlinear Analysis:theory, Method & Applications,70 (5), 2035-2053, 2009.
  • Lo Y., Wang C.C., Lee Y.H., Performance analysis of high-speed spindle aerostatic bearings, Tribology International, 38 (1), 5-14, 2005.
  • Chen Y.S., Chiu C.C., Cheng Y.D., Influence of operational conditions and geometric parameters on stifnness of aerostatic journal bearings, Precision Engineering, 34 (4), 722-734, 2010.
  • Zhang W-M., Zhou J-B., Meng G., Performance and stability analysis of gas lubricated journal bearings in MEMS, Tribology International, 44 (7), 887-897, 2011.
  • Li Y., Zhou K., Zhang Z., A flow difference feedback iteration method and its application to high-speed aerostatic journal bearings, Tribology International, 84 (Apr. 2015), 132-141, 2015.
  • Haentjens T., Hout K., Alternating direction implicit finite difference schemes for the Heston–Hull–White partial differential equation, The Journal of Computational Finance, 16 (1), 83-110, 2012.
  • Dal A., Basınçlı hava yatağıyla desteklenmiş yatak-rotor sisteminin dinamik karakteristiklerinin belirlenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 126-128, 2014.
  • Chapra S.C., Canale, P.R., Numerical Methods for Engineers, McGraw-Hill, 3th Edition, 832-848, 1988.
  • Viktorov V., Belforte G., Raparelli T., Modeling and identification of gas journal bearings: externally pressurized gas bearing results, Journal of Tribology, 127 (3), 548-556, 2005.
  • Karaçay T., Basınçlı Hava Yataklı Rotor Dinamiğinin Teorik ve Deneysel İncelenmesi, Sonuç Raporu, ARDEB-1001-112M847, TUBİTAK, (2015)
  • Dal A., Karaçay T., On the Numerical and Experimental Analysis of Internal Pressure in Air Bearings, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 9 (7), 1232-1237, 2015.
  • Dal A., Karaçay T., On Dynamics of an Externally Pressurized Air Bearing with High Values of Clearance: Effect of Mass Flow Rate, Proceedings of the World Congress on Engineering, Vol-II, London-U.K., 3-6 July, 2014.
  • Dal A., Karaçay T., Vıbratıon Of Two Degrees Of Freedom Aır Bearıng rotor System Wıth Asymmetrıc Supply Pressure, International Conference on Engineering Vibration, Ljubljana-Slovenia, 519-528, 7-10 September, 2015
  • Otsu Y., Somaya K., Yoshimoto S., High-speed stability of a rigid rotor supported by aerostatic journal bearings with compound restrictors, Tribology International, 44 (1), 9-17, 2011.
  • .
Year 2017, Volume: 32 Issue: 1, 0 - 0, 23.03.2017
https://doi.org/10.17341/gazimmfd.300607

Abstract

References

  • Fuller D. D., A review of research in the field of gas-lubricated bearings, NASA Report, 2429, USA, 5-50, 1970.
  • Uneeb M., Theoretical Investigation of Whirl Instability In Externally Pressurized Gas Journal Bearings, PhD Thesis, Imperial College of Science, Techgnologyand Medicine, London, UK, 29-92, 1992.
  • Ausman J. S., The fluid dynamic theory of gas lubricated bearing, Trans. Amer. Soc. Lub., Engrs., 79 (6), 1218-1224, 1957.
  • Gross W. A., Investigation of whirl in externally pressurized air-lubricated journal bearings, Trans. Amer. Soc. Mech. Engr. J. Basic Eng., 84, 132-140, 1962.
  • Heinrich G., The theory of the externally pressurized bearings, 1st International Symposium on Gas-Lubricated Bearing, USA, 42, 1959.
  • Wang J., Design of Gas Bearing Systems for Precision Applications, PhD. Thesis, Technische Universiteit, Eindhoven, 1-35, 1993.
  • Lund J. W., A theoretical analysis of whirl instability and pneumatic hammer for a rigid rotor in pressurized gas journal bearing, An International Journal on the Science and Technology of Friction, Lubrication and Wear,12 (2), 154-166, 1967.
  • Xu C., and Jiang, S. Dynamic Analysis of a Motorized Spindle With Externally Pressurized Air Bearings, Journal of Vibration and Acoustics, 137 (4), 041001, 2015.
  • Du J., Zhang G., Liu T., To S., Improvement on load performance of externally pressurized gas journal bearings by openning pressure-equalizing grooves, Tribology International, 73 (May 2014), 156-166, 2014.
  • Charki A., Diop K., Champmartin S., Ambari A. Numerical simulation and experimental study of thrust air bearings with multiple orifices, International Journal of Mechanical Sciences, 72, 28-38, 2013.
  • Gao S, Cheng K., Chen S., Ding H and Fu H., Computational design and analysis of aerostatic journal bearing with application to ultra-high speed spindles, Proc. of the Inst. of Mech. Eng., Part C: Journal of Mechanical Engineering Science, 095440621663934, 2016.
  • Wang X., Xu Q., Wang B., Zhang L., Yang H., and Peng Z., Effects of surface waviness on the static performance of aerostatic journal bearing, Tribology International, 103, 394-405, 2016.
  • Wang C., Yau H., Theoretical analysis of high speed spindle air bearings by a hybrid numerical method, Applied Mathematics and Computation, 217 (5), 2084-2096, 2010.
  • Bilgili M., and Sivrioğlu M., Pem Yakıt Pilinin Değişik Membran Elektrot Çifti Kalınlıklarında Ve Farklı Çalışma Basıncı Koşullarında Üç Boyutlu Sayısal Analizi-3d Numerıcal Analysıs Of Pem Fuel Cell At Dıfferent Mea Thıcknesses And Operatıng Pressure Condıtıons, Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi / Journal of the Faculty of Engineering & Architecture of Gazi University, 31 (1), 51-63, 2016.
  • Chang S.H., Chan, C.W. and Jeng, Y.R., Numerical analysis of discharge coefficients in aerostatic bearings with orifice-type restrictors, Tribology International, 90 (October 2015),157-163, 2015.
  • Czolczynski, K., “Rotordynamics of Gas-Lubricated Journal Bearing Systems”, Ling, F. F., Winer, W. O., Springer, NewYork, 1-48 (1999).
  • Piekos E. S., Numerical Simulation of Gas- Lubricated Journal Bearings For Microfabricated Machines, PhD. Thesis, Department of Aeronautics and Astronautics Massachusetts Instıtute Of Technology, Boston, 15-108, 2000.
  • Wang C. Application of a hybrid method to the nonlinear dynamic analysis of a flexible rotor supported by a spherical gas-lubricated bearing system, Nonlinear Analysis:theory, Method & Applications,70 (5), 2035-2053, 2009.
  • Lo Y., Wang C.C., Lee Y.H., Performance analysis of high-speed spindle aerostatic bearings, Tribology International, 38 (1), 5-14, 2005.
  • Chen Y.S., Chiu C.C., Cheng Y.D., Influence of operational conditions and geometric parameters on stifnness of aerostatic journal bearings, Precision Engineering, 34 (4), 722-734, 2010.
  • Zhang W-M., Zhou J-B., Meng G., Performance and stability analysis of gas lubricated journal bearings in MEMS, Tribology International, 44 (7), 887-897, 2011.
  • Li Y., Zhou K., Zhang Z., A flow difference feedback iteration method and its application to high-speed aerostatic journal bearings, Tribology International, 84 (Apr. 2015), 132-141, 2015.
  • Haentjens T., Hout K., Alternating direction implicit finite difference schemes for the Heston–Hull–White partial differential equation, The Journal of Computational Finance, 16 (1), 83-110, 2012.
  • Dal A., Basınçlı hava yatağıyla desteklenmiş yatak-rotor sisteminin dinamik karakteristiklerinin belirlenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 126-128, 2014.
  • Chapra S.C., Canale, P.R., Numerical Methods for Engineers, McGraw-Hill, 3th Edition, 832-848, 1988.
  • Viktorov V., Belforte G., Raparelli T., Modeling and identification of gas journal bearings: externally pressurized gas bearing results, Journal of Tribology, 127 (3), 548-556, 2005.
  • Karaçay T., Basınçlı Hava Yataklı Rotor Dinamiğinin Teorik ve Deneysel İncelenmesi, Sonuç Raporu, ARDEB-1001-112M847, TUBİTAK, (2015)
  • Dal A., Karaçay T., On the Numerical and Experimental Analysis of Internal Pressure in Air Bearings, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 9 (7), 1232-1237, 2015.
  • Dal A., Karaçay T., On Dynamics of an Externally Pressurized Air Bearing with High Values of Clearance: Effect of Mass Flow Rate, Proceedings of the World Congress on Engineering, Vol-II, London-U.K., 3-6 July, 2014.
  • Dal A., Karaçay T., Vıbratıon Of Two Degrees Of Freedom Aır Bearıng rotor System Wıth Asymmetrıc Supply Pressure, International Conference on Engineering Vibration, Ljubljana-Slovenia, 519-528, 7-10 September, 2015
  • Otsu Y., Somaya K., Yoshimoto S., High-speed stability of a rigid rotor supported by aerostatic journal bearings with compound restrictors, Tribology International, 44 (1), 9-17, 2011.
  • .
There are 32 citations in total.

Details

Journal Section Makaleler
Authors

Abdurrahim Dal

Tuncay Karaçay

Publication Date March 23, 2017
Submission Date December 24, 2015
Published in Issue Year 2017 Volume: 32 Issue: 1

Cite

APA Dal, A., & Karaçay, T. (2017). Radyal Havalı Yataklarda Basınç Dağılımının Nümerik Analizinde Çözüm Parametrelerinin ve Silindirik Grid Birleşiminin Etkileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(1). https://doi.org/10.17341/gazimmfd.300607
AMA Dal A, Karaçay T. Radyal Havalı Yataklarda Basınç Dağılımının Nümerik Analizinde Çözüm Parametrelerinin ve Silindirik Grid Birleşiminin Etkileri. GUMMFD. March 2017;32(1). doi:10.17341/gazimmfd.300607
Chicago Dal, Abdurrahim, and Tuncay Karaçay. “Radyal Havalı Yataklarda Basınç Dağılımının Nümerik Analizinde Çözüm Parametrelerinin Ve Silindirik Grid Birleşiminin Etkileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 32, no. 1 (March 2017). https://doi.org/10.17341/gazimmfd.300607.
EndNote Dal A, Karaçay T (March 1, 2017) Radyal Havalı Yataklarda Basınç Dağılımının Nümerik Analizinde Çözüm Parametrelerinin ve Silindirik Grid Birleşiminin Etkileri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 32 1
IEEE A. Dal and T. Karaçay, “Radyal Havalı Yataklarda Basınç Dağılımının Nümerik Analizinde Çözüm Parametrelerinin ve Silindirik Grid Birleşiminin Etkileri”, GUMMFD, vol. 32, no. 1, 2017, doi: 10.17341/gazimmfd.300607.
ISNAD Dal, Abdurrahim - Karaçay, Tuncay. “Radyal Havalı Yataklarda Basınç Dağılımının Nümerik Analizinde Çözüm Parametrelerinin Ve Silindirik Grid Birleşiminin Etkileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 32/1 (March 2017). https://doi.org/10.17341/gazimmfd.300607.
JAMA Dal A, Karaçay T. Radyal Havalı Yataklarda Basınç Dağılımının Nümerik Analizinde Çözüm Parametrelerinin ve Silindirik Grid Birleşiminin Etkileri. GUMMFD. 2017;32. doi:10.17341/gazimmfd.300607.
MLA Dal, Abdurrahim and Tuncay Karaçay. “Radyal Havalı Yataklarda Basınç Dağılımının Nümerik Analizinde Çözüm Parametrelerinin Ve Silindirik Grid Birleşiminin Etkileri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 32, no. 1, 2017, doi:10.17341/gazimmfd.300607.
Vancouver Dal A, Karaçay T. Radyal Havalı Yataklarda Basınç Dağılımının Nümerik Analizinde Çözüm Parametrelerinin ve Silindirik Grid Birleşiminin Etkileri. GUMMFD. 2017;32(1).