Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimum design of the air core multilayer tapped reactor

Yıl 2018, Cilt: 33 Sayı: 1, 189 - 198, 08.03.2018
https://doi.org/10.17341/gazimmfd.406791

Öz

In this study, an algorithm which optimizes the multilayer tapped reactor has been introduced. The model used in the tapped reactor is based on the principle of equalization of the voltage values of each reactor coil connected in parallel with the Kirchhoff voltage law. The algorithm redesigns the reactor, inner diameter of the reactor for each different inner diameter value between a specified minimum value and a maximum value (increasing by 1 cm). For each inner diameter value between the smallest and the largest value previously determined, the algorithm calculates three values; Active power loss of the tapped reactor, the weight of the tapped reactor, and the height of the tapped reactor. These three different indexes are calculated (in the form of three columns of the matrix). When the calculation ends for all the specified inner diameter values, three different curves are generated depending on each column (vertical axis) and inner diameter (horizontal axis) value of the matrix. The smallest points of the first two (reactor active power loss and reactor weight) curve show the optimum reactor production values sought. If the producer thinks to produce according to one of two different purposes, he chooses the optimum value for it. The magnetic field (self and common inductance) calculations of the tapped reactor are built on Lorenz, Maxwell equations and elliptic integrals of the third order are used.

Kaynakça

  • Sarıbulut L., Teke A., Latran M. B., Multi-functional static synchronous compensator for distribution systems, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 727-736, 2016.
  • Akdemir M., Yıldırım S., Genç N., Design and simulation of active direct current filter for high voltage direct current transmission systems, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (4), 1073-1083, 2017.
  • Deniz E., Aydoğmuş Ö., Design and implementation of two-phase matrix converter, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 9-20, 2017.
  • Özdemir E., Özdemir Ş., ,Erhan K., Aktaş A., Opportunities and challenges for energy storage applications in smart grid, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 499-506, 2017.
  • Liu Z.G., Wang J. H., Wang W.P., Development and Application of Dry Type Air Core Reactor Design Software, Electric Machines and Control, 6 (7), 103-106, 2003.
  • Xiuke Y., Guiping Y. ve ark., Magnetic Field Research and Circulating Current Calculation of Power Reactor with Air Core, [J]. Transformer, 47 (6), 1-4, 2010.
  • Sippola M., Sepponen R. E., Accurate Prediction of High Frequency Power Transformer Losses and Temperature Rise, IEEE Trans. on Power. Electronics, 17 (5), 835-847, 2002.
  • Zhigang L., Jianhua W. J., Yingsan G. ve ark., Calculation of Temperature Field of Dry Type Air Core Damping Reactor Based on Coupled Method, Journal of Xi an Jiaotong University, 37 (6), 59-63, 2003.
  • Enohnyaket M., Ekman, J., PEEC Models for Air Core Reactors Modeling Skin and Proximity Effects, Power Electronics Specialists Conference, PESC IEEE, 3034-3038, 2007.
  • Zhigang L., Yingsan G., Wang J., Degui C., Anbo W., Design and Analysis of New Type Air Core Reactor Based on Coupled Fluid Thermal Field Calculation, Transactions of China Electrotechnical Society. 18 (6), 59-63, 2003.
  • Dongbai Z., Yingxin M., A Assigning Method for Air Core Power Reactor, Harbin Institute of Electrical Technology Journal,1, pp. 54–59, 1996.
  • Yu Z., Wang S., Optimum design of dry-type air-core reactor based on coupled multi-physics of reconstructed finite element model, Transaction of China Electrotechnical Society, 30(20), 71-78, 2015.
  • Xia T.,Yan Y., Optimum Design of Dry Type Air Core Current Limited Reactor, Electric Machines and Control, 1, 51–53, 1998.
  • Yuan Zheng Z., Feng C., Kang B., Xikui M., Optimum Design of Dry Type Air Core Reactor Based on the Additional Constraints Balance and Hybrid Genetic Algorithm, Inter. J. of App. Electromagnetics and Mechanics, 33, 279–284, 2010.
  • Jian L., Zhenhai Z., Longnv L., Guoli L., Manhua J., Calculation and Design of Dry Type Air Core Reactor, Energy and Power Engineering, 5, 1101-1104, 2013.
  • http://www.trenchgroup.com/en/Downloads/Coil-Products
  • Kirchhoff, G.1864. Zur Theorie der Entladung Einer Leydner Flasche, Annalen der Physik, 71, 551-566.
  • Maxwell J.C, A Treatise on Electricity and Magnetism, Dover Publications Inc, New York, 1954.
  • Alexander R., The Magnetic Field and Inductance Coefficients of Circular, Cylindrical, and Helical Currents, Proc. Phys. Soc. London, 20(1),476-506, 1906.
  • Chester S., Formulas for Computing Capacitance and Inductance, National Bureau of Standards Circular, U.S. Govt. Print. Off., 544, 1954.
  • Lorenz, L., Ueber die Fortpflanzung der Flectricität, Annalen der Physik, 7, 161-193. 1879.
  • Viriamu J., On the Calculation of the Coefficient of Mutual Induction of A Circle and A Coaxial Helix, and of the Electromagnetic Force Between a Helical Current and A Uniform Coaxial Circular Cylindrical Current Sheet, Phil. Trans. of the Roy. Soc., 63,192-205, 1898.
  • Babic S. and Akyel C., Improvement in Calculation of the Self and Mutual Inductance of Thin-Wall Solenoids and Disk Coils, IEEE Transactions on Magnetics 36 (4), 1970-1975, 2000
  • Andersen, O. W., Optimum Design of Electrical Machines. (Doktora tezi). Chalmers University of Technology, Göteborg,1969.

Hava nüveli, çok katmanlı, kademeli reaktörün optimum tasarım algoritması

Yıl 2018, Cilt: 33 Sayı: 1, 189 - 198, 08.03.2018
https://doi.org/10.17341/gazimmfd.406791

Öz

Bu çalışmada, have nüveli, çok katmanlı kademeli reaktörün optimum tasarımını yapan bir algoritma tanıtılmaktadır. Kademeli reaktörde kullanılan model, Kirchhoff gerilim yasasından hareketle, paralel bağlı her bir reaktör bobininin gerilim değerlerinin eşitliği prensibi üzerine bina edilmiştir. Kademeli reaktör iç çapının, belirlenen bir minimum değer ile bir maksimum değer arasındaki (1 cm aralıkla artan) her farklı iç çap değeri için algoritma reaktörü tekrar tasarlar.  Daha önce belirlenen minimum ve maksimum değer arasındaki her bir iç çap değeri için, algoritma üç değer hesaplar; kademeli reaktörün aktif güç kaybı, kademeli reaktörün ağırlığı ve kademeli reaktörün yüksekliği.  Hesaplanan bu üç farklı dizin (matrisin üç sütunu şeklinde) kaydedilir. Belirlenen tüm iç çap değerleri için hesaplama sona erdiğinde, matrisin her bir sütunu (düşey eksen) ve iç çap (yatay eksen) değerine bağlı olarak üç farklı eğri üretilmiş olur. İlk iki (reaktör aktif güç kaybı ve reaktör ağırlığı) eğrinin minimum noktaları, aranılan en uygun (optimum) reaktör üretim değerlerini gösterir. Üretici iki farklı amaçtan hangisine göre üretim yapmayı düşünür ise ona ilişkin optimum değeri tercih eder. Kademeli reaktörün manyetik alan (öz ve ortak endüktans) hesaplamaları Lorenz, Maxwell eşitlikleri üzerine bina edilmiş ve 3. mertebeden eliptik entegraller kullanılmıştır. 

Kaynakça

  • Sarıbulut L., Teke A., Latran M. B., Multi-functional static synchronous compensator for distribution systems, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 727-736, 2016.
  • Akdemir M., Yıldırım S., Genç N., Design and simulation of active direct current filter for high voltage direct current transmission systems, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (4), 1073-1083, 2017.
  • Deniz E., Aydoğmuş Ö., Design and implementation of two-phase matrix converter, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (1), 9-20, 2017.
  • Özdemir E., Özdemir Ş., ,Erhan K., Aktaş A., Opportunities and challenges for energy storage applications in smart grid, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 499-506, 2017.
  • Liu Z.G., Wang J. H., Wang W.P., Development and Application of Dry Type Air Core Reactor Design Software, Electric Machines and Control, 6 (7), 103-106, 2003.
  • Xiuke Y., Guiping Y. ve ark., Magnetic Field Research and Circulating Current Calculation of Power Reactor with Air Core, [J]. Transformer, 47 (6), 1-4, 2010.
  • Sippola M., Sepponen R. E., Accurate Prediction of High Frequency Power Transformer Losses and Temperature Rise, IEEE Trans. on Power. Electronics, 17 (5), 835-847, 2002.
  • Zhigang L., Jianhua W. J., Yingsan G. ve ark., Calculation of Temperature Field of Dry Type Air Core Damping Reactor Based on Coupled Method, Journal of Xi an Jiaotong University, 37 (6), 59-63, 2003.
  • Enohnyaket M., Ekman, J., PEEC Models for Air Core Reactors Modeling Skin and Proximity Effects, Power Electronics Specialists Conference, PESC IEEE, 3034-3038, 2007.
  • Zhigang L., Yingsan G., Wang J., Degui C., Anbo W., Design and Analysis of New Type Air Core Reactor Based on Coupled Fluid Thermal Field Calculation, Transactions of China Electrotechnical Society. 18 (6), 59-63, 2003.
  • Dongbai Z., Yingxin M., A Assigning Method for Air Core Power Reactor, Harbin Institute of Electrical Technology Journal,1, pp. 54–59, 1996.
  • Yu Z., Wang S., Optimum design of dry-type air-core reactor based on coupled multi-physics of reconstructed finite element model, Transaction of China Electrotechnical Society, 30(20), 71-78, 2015.
  • Xia T.,Yan Y., Optimum Design of Dry Type Air Core Current Limited Reactor, Electric Machines and Control, 1, 51–53, 1998.
  • Yuan Zheng Z., Feng C., Kang B., Xikui M., Optimum Design of Dry Type Air Core Reactor Based on the Additional Constraints Balance and Hybrid Genetic Algorithm, Inter. J. of App. Electromagnetics and Mechanics, 33, 279–284, 2010.
  • Jian L., Zhenhai Z., Longnv L., Guoli L., Manhua J., Calculation and Design of Dry Type Air Core Reactor, Energy and Power Engineering, 5, 1101-1104, 2013.
  • http://www.trenchgroup.com/en/Downloads/Coil-Products
  • Kirchhoff, G.1864. Zur Theorie der Entladung Einer Leydner Flasche, Annalen der Physik, 71, 551-566.
  • Maxwell J.C, A Treatise on Electricity and Magnetism, Dover Publications Inc, New York, 1954.
  • Alexander R., The Magnetic Field and Inductance Coefficients of Circular, Cylindrical, and Helical Currents, Proc. Phys. Soc. London, 20(1),476-506, 1906.
  • Chester S., Formulas for Computing Capacitance and Inductance, National Bureau of Standards Circular, U.S. Govt. Print. Off., 544, 1954.
  • Lorenz, L., Ueber die Fortpflanzung der Flectricität, Annalen der Physik, 7, 161-193. 1879.
  • Viriamu J., On the Calculation of the Coefficient of Mutual Induction of A Circle and A Coaxial Helix, and of the Electromagnetic Force Between a Helical Current and A Uniform Coaxial Circular Cylindrical Current Sheet, Phil. Trans. of the Roy. Soc., 63,192-205, 1898.
  • Babic S. and Akyel C., Improvement in Calculation of the Self and Mutual Inductance of Thin-Wall Solenoids and Disk Coils, IEEE Transactions on Magnetics 36 (4), 1970-1975, 2000
  • Andersen, O. W., Optimum Design of Electrical Machines. (Doktora tezi). Chalmers University of Technology, Göteborg,1969.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Uğur Halil Arifoğlu

Yayımlanma Tarihi 8 Mart 2018
Gönderilme Tarihi 2 Ekim 2016
Yayımlandığı Sayı Yıl 2018 Cilt: 33 Sayı: 1

Kaynak Göster

APA Arifoğlu, U. H. (2018). Hava nüveli, çok katmanlı, kademeli reaktörün optimum tasarım algoritması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(1), 189-198. https://doi.org/10.17341/gazimmfd.406791
AMA Arifoğlu UH. Hava nüveli, çok katmanlı, kademeli reaktörün optimum tasarım algoritması. GUMMFD. Mart 2018;33(1):189-198. doi:10.17341/gazimmfd.406791
Chicago Arifoğlu, Uğur Halil. “Hava nüveli, çok katmanlı, Kademeli reaktörün Optimum tasarım Algoritması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33, sy. 1 (Mart 2018): 189-98. https://doi.org/10.17341/gazimmfd.406791.
EndNote Arifoğlu UH (01 Mart 2018) Hava nüveli, çok katmanlı, kademeli reaktörün optimum tasarım algoritması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33 1 189–198.
IEEE U. H. Arifoğlu, “Hava nüveli, çok katmanlı, kademeli reaktörün optimum tasarım algoritması”, GUMMFD, c. 33, sy. 1, ss. 189–198, 2018, doi: 10.17341/gazimmfd.406791.
ISNAD Arifoğlu, Uğur Halil. “Hava nüveli, çok katmanlı, Kademeli reaktörün Optimum tasarım Algoritması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33/1 (Mart 2018), 189-198. https://doi.org/10.17341/gazimmfd.406791.
JAMA Arifoğlu UH. Hava nüveli, çok katmanlı, kademeli reaktörün optimum tasarım algoritması. GUMMFD. 2018;33:189–198.
MLA Arifoğlu, Uğur Halil. “Hava nüveli, çok katmanlı, Kademeli reaktörün Optimum tasarım Algoritması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 33, sy. 1, 2018, ss. 189-98, doi:10.17341/gazimmfd.406791.
Vancouver Arifoğlu UH. Hava nüveli, çok katmanlı, kademeli reaktörün optimum tasarım algoritması. GUMMFD. 2018;33(1):189-98.