Research Article
BibTex RIS Cite

Ölçeklendirilen deprem kayıtlarının farklı doğrultularda etkimesi durumunda izolatör deplasmanlarında gözlenen artış

Year 2018, Volume: 33 Issue: 2, 585 - 598, 06.04.2018
https://doi.org/10.17341/gazimmfd.416367

Abstract

Bu çalışmada, sismik taban izolasyonu uygulaması kurşun çekirdekli kauçuk izolatörler (KÇKİ) kullanılarak gerçekleştirilen tipik bir yapıda, maksimum izolatör deplasmanlarındaki (MİD) değişim deprem etkime açısına bağlı olarak incelenmiştir. Bu amaçla, seçilen deprem kayıtlarının orijinal halleri 10º aralıklarla 180º boyunca döndürülerek aynı deprem hareketinin farklı etkime açılarına sahip versiyonları oluşturulmuştur. Yürütülen doğrusal olmayan dinamik analizlerde, dikkate alınan deprem hareketine ait her iki yatay deprem bileşeni oluşturulan yapısal modele eş zamanlı olarak tatbik ettirilmiştir. Analizlerde kullanılan deprem hareketleri, yakın saha kaynaklı kayıtlar arasından seçilmiş olup, tasarım deprem (TD) ve maksimum deprem (MD) seviyelerini temsil edecek şekilde ölçeklendirilmiştir. Analizlerde, maruz kalınan harekete bağlı olarak KÇKİ’nin histeretik eğrilerinde, kurşun çekirdekteki ısınmaya bağlı, dayanım kaybını dikkate alabilen malzeme modeli kullanılmıştır. Ayrıca, incelemeye konu olan deprem etkime açısına bağlı MİD’deki değişimin izolasyon periyoduna olan hassasiyetini belirleyebilmek adına dört farklı özellikte izolatör tasarlanmıştır. Yapılan analizler sonucunda, orijinal deprem kayıtlarının döndürülmesi sonucu MİD’deki artışın ihmal edilebilir seviyede (ortalama olarak %2 mertebesinde) olduğu gözlenmiştir. Bu artış miktarının TD ve MD seviyeleri için farklılaşmadığı tespit edilmiştir. Ayrıca, deprem hareketinin farklı etkime açısına bağlı olarak ortaya çıkan MİD’deki artışın, izolasyon periyodundaki değişimden etkilenmediği görülmüştür.

References

  • American Society of Civil Engineers (ASCE). “Minimum design loads for buildings and other structures. Standard, ASCE/SEI 7-10”, Reston, VA 2010.
  • Eurocode 8: design of structures for earthquake resistance Part 2: Bridges. EN 1998-2, 2005.
  • Lopez, O. A., Chopra, A. K., Hernandez, J. J., “Critical response of structures to multicomponent earthquake excitation”, Earthquake Eng. Struct. Dyn., 29(12), 1759-1778, 2000.
  • Athanatopoulou, A. M., “Critical orientation of three correlated seismic components”, Eng. Struct., 27(2), 301-312, 2005.
  • Rigato A. B, Medina R. A., “Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions”, Eng. Struct., 29(10), 2593-2601, 2007.
  • Kostinakis, K. G., Athanatopoulou, A. M., Avramidis, I. E., “Evaluation of inelastic response of 3D single-story R/C frames under bi-directional excitation using different orientation schemes”, Bull. Earthquake Eng., 11(2), 637-661, 2013.
  • Moschonas, I. F., Kappos, A. J., “Assessment of concrete bridges subjected to ground motion with an arbitrary angle of incidence: static and dynamic approach”, Bull. Earthquake Eng., 11(2), 581-605, 2013.
  • Kalkan, E., Reyes, J. C., “Significance of Rotating Ground Motions on Behavior of Symmetric- and Asymmetric-plan Structures: Part 2. Multi-story Structures”, Earthquake Spectra, 31(3), 1613-1628, 2015.
  • FEMA 451. National Earthquake Hazard Reduction Program (NEHRP), Recommended Provisions: Design Examples, Building seismic safety council. National institute of building sciences, Washington, 2006.
  • Dicleli, M., “Performance of seismic-isolated bridges in relation to near-fault ground-motion and isolator characteristics”, Earthquake Spectra, 22(4), 887-907, 2006.
  • Warn, G. P., Whittaker, A. S., “Performance estimates in seismically isolated bridge structures”, Eng. Struct., 26(9), 1261-1278, 2004.
  • Robinson, W. H., “Lead‐rubber hysteretic bearings suitable for protecting structures during earthquakes”, Earthquake Eng. Struct. Dyn., 10(4), 593-604, 1982.
  • Kalpakidis I.V. and Constantinou M.C., “Effects of Heating on the Behavior of Lead-Rubber Bearing. I:Theory”, J. Struct. Eng., 135(12), 1440-1449, 2009.
  • Kalpakidis I.V. and Constantinou M.C., “Effects of Heating on the Behavior of Lead-Rubber Bearing. II:Verification of Theory”, J. Struct. Eng., 135(12), 1450-1461, 2009.
  • Ozdemir, G., Avsar, O., Bayhan, B. “Change in Response of Bridges Isolated with LRBs due to Lead Core Heating”, Soil Dyn. Earthquake Eng., 31(7), 921-929, 2011.
  • Ozdemir, G. and Dicleli, M., “Effect of lead core heating on the seismic performance of bridges isolated with LRB in near‐fault zones”, Earthquake Eng. Struct. Dyn., 41(14), 1989-2007, 2012.
  • Ozdemir, G., “Lead Core Heating in LRBs Subjected to Bidirectional Ground Motion Excitations in Various Soil Types”, Earthquake Eng. Struct. Dyn., 43(2), 267-285, 2014.
  • Ozdemir, G., “Formulations for Equivalent Linearization of LRBs in order to Incorporate Effect of Lead Core Heating”, Earthquake Spectra, 31(1), 317-337, 2015.
  • Ozdemir, G., Bayhan, B., “Response of an Isolated Structure with Deteriorating Hysteretic Isolator Model”, Research on Engineering Structures and Materials, 1(1), 1-9, 2015.
  • Ozdemir, G. and Constantinou, M.C., “Evaluation of equivalent lateral force procedure in estimating seismic isolator displacements”, Soil Dyn. Earthquake Eng., 30(10), 1036-1042, 2010.
  • Ozdemir, G., Gulkan, P. “Scaling Legitimacy for Design of Lead Rubber Bearing Isolated Structures Using a Bounding Analysis”, Earthquake Spectra, 32(1), 345-366, 2016.
  • Somerville P.G., Smith N.F., Graves R.W. and Abrahamson N.A, “Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity”, Seismol. Res. Lett., 68(1), 199222, 1997.
  • Avsar, O. and Ozdemir, G., “Response of Seismic-Isolated Bridges in Relation to Intensity Measures of Ordinary and Pulselike Ground Motions”, J. Bridge Eng., 18(3), 250-260, 2013.
  • Turkish Earthquake Code (TEC). Specifications for the Buildings to be Constructed in Disaster Areas, Ministry of Public Works and Settlement, Ankara, Turkey, 2007.
  • Huang Y. N., “Performance Assessment of Conventional and Base-Isolated Nuclear Power Plants for Earthquake and Blast Loadings”, PhD Thesis, Department of Civil, Structural and Environmental Engineering, State University of New York at Buffalo, 2008.
  • Park Y.J., Wen Y.K. and Ang A.H., “Random Vibration of Hysteretic Systems under Bi-Directional Ground Motions”, Earthquake Eng. Struct. Dyn., 14(4), 543-557, 1986.
  • Constantinou M.C. and Adnane M.A., “Dynamics of Soil-Base-Isolated Structure Systems: Evaluation of Two Models for Yielding Systems”, Report to NSF, Department of Civil Engineering, Drexel University, Philadelphia, 1987.
Year 2018, Volume: 33 Issue: 2, 585 - 598, 06.04.2018
https://doi.org/10.17341/gazimmfd.416367

Abstract

References

  • American Society of Civil Engineers (ASCE). “Minimum design loads for buildings and other structures. Standard, ASCE/SEI 7-10”, Reston, VA 2010.
  • Eurocode 8: design of structures for earthquake resistance Part 2: Bridges. EN 1998-2, 2005.
  • Lopez, O. A., Chopra, A. K., Hernandez, J. J., “Critical response of structures to multicomponent earthquake excitation”, Earthquake Eng. Struct. Dyn., 29(12), 1759-1778, 2000.
  • Athanatopoulou, A. M., “Critical orientation of three correlated seismic components”, Eng. Struct., 27(2), 301-312, 2005.
  • Rigato A. B, Medina R. A., “Influence of angle of incidence on seismic demands for inelastic single-storey structures subjected to bi-directional ground motions”, Eng. Struct., 29(10), 2593-2601, 2007.
  • Kostinakis, K. G., Athanatopoulou, A. M., Avramidis, I. E., “Evaluation of inelastic response of 3D single-story R/C frames under bi-directional excitation using different orientation schemes”, Bull. Earthquake Eng., 11(2), 637-661, 2013.
  • Moschonas, I. F., Kappos, A. J., “Assessment of concrete bridges subjected to ground motion with an arbitrary angle of incidence: static and dynamic approach”, Bull. Earthquake Eng., 11(2), 581-605, 2013.
  • Kalkan, E., Reyes, J. C., “Significance of Rotating Ground Motions on Behavior of Symmetric- and Asymmetric-plan Structures: Part 2. Multi-story Structures”, Earthquake Spectra, 31(3), 1613-1628, 2015.
  • FEMA 451. National Earthquake Hazard Reduction Program (NEHRP), Recommended Provisions: Design Examples, Building seismic safety council. National institute of building sciences, Washington, 2006.
  • Dicleli, M., “Performance of seismic-isolated bridges in relation to near-fault ground-motion and isolator characteristics”, Earthquake Spectra, 22(4), 887-907, 2006.
  • Warn, G. P., Whittaker, A. S., “Performance estimates in seismically isolated bridge structures”, Eng. Struct., 26(9), 1261-1278, 2004.
  • Robinson, W. H., “Lead‐rubber hysteretic bearings suitable for protecting structures during earthquakes”, Earthquake Eng. Struct. Dyn., 10(4), 593-604, 1982.
  • Kalpakidis I.V. and Constantinou M.C., “Effects of Heating on the Behavior of Lead-Rubber Bearing. I:Theory”, J. Struct. Eng., 135(12), 1440-1449, 2009.
  • Kalpakidis I.V. and Constantinou M.C., “Effects of Heating on the Behavior of Lead-Rubber Bearing. II:Verification of Theory”, J. Struct. Eng., 135(12), 1450-1461, 2009.
  • Ozdemir, G., Avsar, O., Bayhan, B. “Change in Response of Bridges Isolated with LRBs due to Lead Core Heating”, Soil Dyn. Earthquake Eng., 31(7), 921-929, 2011.
  • Ozdemir, G. and Dicleli, M., “Effect of lead core heating on the seismic performance of bridges isolated with LRB in near‐fault zones”, Earthquake Eng. Struct. Dyn., 41(14), 1989-2007, 2012.
  • Ozdemir, G., “Lead Core Heating in LRBs Subjected to Bidirectional Ground Motion Excitations in Various Soil Types”, Earthquake Eng. Struct. Dyn., 43(2), 267-285, 2014.
  • Ozdemir, G., “Formulations for Equivalent Linearization of LRBs in order to Incorporate Effect of Lead Core Heating”, Earthquake Spectra, 31(1), 317-337, 2015.
  • Ozdemir, G., Bayhan, B., “Response of an Isolated Structure with Deteriorating Hysteretic Isolator Model”, Research on Engineering Structures and Materials, 1(1), 1-9, 2015.
  • Ozdemir, G. and Constantinou, M.C., “Evaluation of equivalent lateral force procedure in estimating seismic isolator displacements”, Soil Dyn. Earthquake Eng., 30(10), 1036-1042, 2010.
  • Ozdemir, G., Gulkan, P. “Scaling Legitimacy for Design of Lead Rubber Bearing Isolated Structures Using a Bounding Analysis”, Earthquake Spectra, 32(1), 345-366, 2016.
  • Somerville P.G., Smith N.F., Graves R.W. and Abrahamson N.A, “Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity”, Seismol. Res. Lett., 68(1), 199222, 1997.
  • Avsar, O. and Ozdemir, G., “Response of Seismic-Isolated Bridges in Relation to Intensity Measures of Ordinary and Pulselike Ground Motions”, J. Bridge Eng., 18(3), 250-260, 2013.
  • Turkish Earthquake Code (TEC). Specifications for the Buildings to be Constructed in Disaster Areas, Ministry of Public Works and Settlement, Ankara, Turkey, 2007.
  • Huang Y. N., “Performance Assessment of Conventional and Base-Isolated Nuclear Power Plants for Earthquake and Blast Loadings”, PhD Thesis, Department of Civil, Structural and Environmental Engineering, State University of New York at Buffalo, 2008.
  • Park Y.J., Wen Y.K. and Ang A.H., “Random Vibration of Hysteretic Systems under Bi-Directional Ground Motions”, Earthquake Eng. Struct. Dyn., 14(4), 543-557, 1986.
  • Constantinou M.C. and Adnane M.A., “Dynamics of Soil-Base-Isolated Structure Systems: Evaluation of Two Models for Yielding Systems”, Report to NSF, Department of Civil Engineering, Drexel University, Philadelphia, 1987.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Esengül Çavdar This is me 0000-0003-1497-0908

Gökhan Özdemir This is me 0000-0002-2962-2327

Publication Date April 6, 2018
Submission Date November 21, 2016
Acceptance Date March 16, 2017
Published in Issue Year 2018 Volume: 33 Issue: 2

Cite

APA Çavdar, E., & Özdemir, G. (2018). Ölçeklendirilen deprem kayıtlarının farklı doğrultularda etkimesi durumunda izolatör deplasmanlarında gözlenen artış. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(2), 585-598. https://doi.org/10.17341/gazimmfd.416367
AMA Çavdar E, Özdemir G. Ölçeklendirilen deprem kayıtlarının farklı doğrultularda etkimesi durumunda izolatör deplasmanlarında gözlenen artış. GUMMFD. June 2018;33(2):585-598. doi:10.17341/gazimmfd.416367
Chicago Çavdar, Esengül, and Gökhan Özdemir. “Ölçeklendirilen Deprem kayıtlarının Farklı doğrultularda Etkimesi Durumunda izolatör deplasmanlarında gözlenen artış”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33, no. 2 (June 2018): 585-98. https://doi.org/10.17341/gazimmfd.416367.
EndNote Çavdar E, Özdemir G (June 1, 2018) Ölçeklendirilen deprem kayıtlarının farklı doğrultularda etkimesi durumunda izolatör deplasmanlarında gözlenen artış. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33 2 585–598.
IEEE E. Çavdar and G. Özdemir, “Ölçeklendirilen deprem kayıtlarının farklı doğrultularda etkimesi durumunda izolatör deplasmanlarında gözlenen artış”, GUMMFD, vol. 33, no. 2, pp. 585–598, 2018, doi: 10.17341/gazimmfd.416367.
ISNAD Çavdar, Esengül - Özdemir, Gökhan. “Ölçeklendirilen Deprem kayıtlarının Farklı doğrultularda Etkimesi Durumunda izolatör deplasmanlarında gözlenen artış”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33/2 (June 2018), 585-598. https://doi.org/10.17341/gazimmfd.416367.
JAMA Çavdar E, Özdemir G. Ölçeklendirilen deprem kayıtlarının farklı doğrultularda etkimesi durumunda izolatör deplasmanlarında gözlenen artış. GUMMFD. 2018;33:585–598.
MLA Çavdar, Esengül and Gökhan Özdemir. “Ölçeklendirilen Deprem kayıtlarının Farklı doğrultularda Etkimesi Durumunda izolatör deplasmanlarında gözlenen artış”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 33, no. 2, 2018, pp. 585-98, doi:10.17341/gazimmfd.416367.
Vancouver Çavdar E, Özdemir G. Ölçeklendirilen deprem kayıtlarının farklı doğrultularda etkimesi durumunda izolatör deplasmanlarında gözlenen artış. GUMMFD. 2018;33(2):585-98.