PDF Zotero Mendeley EndNote BibTex Cite

Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi

Year 2018, Volume 33, Issue 3, 917 - 928, 14.08.2018
https://doi.org/10.17341/gazimmfd.416394

Abstract

Bu çalışmada, Organik Rankine Çevrimi (ORÇ) entegre edilmiş süperkritik CO2'nin (S-CO2) aracı akışkan olarak kullanıldığı bir gaz türbin çevrimi modeli gerçekleştirilmiştir. Sistemin termodinamik analizleri ASPEN Plus ve EES programları kullanılarak yapılmıştır. Termodinamik analizler sonucunda, önerilen sistemin elektrik üretim kapasitesi, enerji ve ekserji verimleri sırasıyla 1530,88 kW, % 23,30 ve % 59,60 olarak bulunmuştur. Sistemin termoekonomik analizi için ikinci kanuna bağlı maliyet hesabı yöntemleri arasında yaygın olarak kullanılan özgül ekserji maliyetlendirme (SPECO) yöntemi kullanılmıştır. Önerilen sistemde üretilecek elektriğin birim maliyeti 1 kW-saat için 7,28 ¢ ve toplam 1530,88 kW-saat elektrik üretim bedeli için ise 111,43 $ olarak hesaplanmıştır. ORÇ entegre edilmiş S-CO2 kullanılan gaz türbin çevrim sisteminin toplam yatırım maliyeti ve üretilecek elektriğin maliyeti ile satış bedeli arasındaki fark dikkate alınarak sistemden elde edilecek yıllık kar 741.146 $ olarak hesaplanmıştır. Yapılan termoekonomik analiz neticesinde sistemin amortisman süresi 4,09 yıl olarak bulunmuştur. 

References

  • Olumayegun O., Wang M. ve Kelsall G.., Closed-cycle gas turbine for power generation: A state-of-the-art review, Fuel,180, 694-717, 2016.
  • Traverso A., Massardo A.F. ve Scarpellini R., Externally fired micro-gas turbine: modelling and experimental performance, Applied Thermal Engineering, 26, 1935–1941, 2006.
  • Wang J., Sun Z., Dai Y. ve Ma S., Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network, Applied Energy, 87, 1317–1324, 2010.
  • Casella F. ve Colonna P., Development of a Modelica dynamic model of solar supercritical CO2 Brayton cycle power plants for control studies, 2011.
  • Garg P., Kumar P. ve Srinivasan K., Supercritical carbon dioxide Brayton cycle for concentrated solar power, Journal of Supercritical Fluids, 76, 54-60, 2013.
  • Muto Y., Aritomi M., Ishizuka T. ve Watanabe N., Comparison of supercritical CO2 gas turbine cycle and Brayton CO2 gas turbine for solar thermal power plant, 2014.
  • Manente G.. ve Lazzaretto A., Innovative biomass to power conversion systems based on cascaded supercritical CO2 Brayton cycles, Biomass Bioenergy, 69, 155–168, 2014.
  • Reuters Echogen Power Systems, Waste heat recovery system available as turnkey solution 1, 2014-2015.
  • Sánchez D., Muñoz de Escalona J.M., Chacartegui R., Muñoz A. ve Sánchez T., A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology, Journal of Power Sources, 196, 4347–4354, 2011.
  • Bhinder F.S., Calay R., Mustafa M.Y., Al-Zubaidy S. ve Holdo A.E., A hybrid powerplant to moderate carbon emissions, International Journal of Research Review and Application Science, 6, 124-131, 2011.
  • Munoz D.E., Jose M., Chacartegui R., Sánchez D. ve Sánchez T., The potential of the supercritical carbon dioxide cycle in high temperature fuel cell hybrid systems, 2011.
  • Ahmadi M.H., Mehrpooya M. ve Pourfayaz F., Exergoeconomic analysis and multi objective optimization of performance of a Carbon dioxide power cycle driven by geothermal energy with liquefied natural gas as its heat sink, Energy Conversion and Management, 119, 422–434, 2016.
  • Akbari A.D. ve Mahmoudi S.M.S., Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle, Energy, 78, 501-512, 2014.
  • Kim M.S., Ahn Y., Kim B. ve Lee J.I., Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle, Energy, 111, 893-909, 2016.
  • Nami H., Mahmoudi S.M.S. ve Nemati A., Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2), Applied Thermal Engineering, 110, 1315–1330, 2017.
  • Wang X. ve Dai Y., An exergoeconomic assessment of waste heat recovery from a Gas Turbine-Modular Helium Reactor using two transcritical CO2 cycles, Energy Conversion and Management, 126, 561–572, 2016.
  • Drescher U. ve Brüggemann D., Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants, Applied Thermal Engineering, 27, 223–228, 2007.
  • Hung T. C., Wang S. K., Kuo C. H., Pei B. S. ve Tsai K. F., A study of organic working fluids on system efficiency of an ORC using low-grade energy sources, Energy, 35, 1403-1411, 2010.
  • Bao J. ve Zhao L., A review of working fluid and expander selections for organic Rankine cycle, Renewable and Sustainable Energy Reviews, 24, 325–342, 2013.
  • Kaşka Ö., Energy and exergy analysis of an organic Rankine for power generation from waste heat recovery in steel industry, Energy Conversion Management, 77, 108-117, 2014.
  • Tchanche B. F., Pétrissans M. ve Papadakis G., Heat resources and organic Rankine cycle machines, Renewable and Sustainable Energy Reviews, 39, 1185-1199, 2014.
  • He C., Liu C., Zhou M., Xie H., Xu X., Wu S. ve Li Y., A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources, Energy, 68, 283-291, 2014.
  • Di Maria F., Micale C. ve Sordi A., Electrical energy production from the integrated aerobic-anaerobic treatment of organic waste by ORC, Renewable Energy, 66, 461-467, 2014.
  • Galloni E., Fontana G. ve Staccone S., Design and experimental analysis of a mini ORC (organic Rankine cycle) power plant based on R245fa working fluid, Energy, 90, 768-775, 2015.
  • Andreasen J.G., Larsen U., Knudsen T. ve Haglind F., Design and optimization of a novel organic Rankine cycle with improved boiling process, Energy, 91, 48-59, 2015.
  • Desai N. B. ve Bandyopadhyay S., Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle, Applied Thermal Engineering, 95, 471-481, 2016.
  • Muhammad U., Imran M., Lee D. H. ve Park B., S., Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam, Energy Conversion and Management, 103, 1089-1100, 2015.
  • Özdil N. F. T., Segmen M. R. ve Tantekin A., Thermodynamic analysis of an Organic Rankine Cycle (ORC) based on industrial data, Applied Thermal Engineering, 91, 43-52, 2015.
  • Li D., Zhang S. ve Wang G., Selection of organic Rankine cycle working fluids in the low-temperature waste heat utilization, Journal of Hydrodynamics, 27, 458-464, 2015.
  • Li G., Organic Rankine cycle performance evaluation and thermoeconomic assessment with various applications part I: Energy and exergy performance evaluation, Renewable and Sustainable Energy Reviews, 53, 477-499, 2016.
  • Pu W., Yue C., Han D., He W., Liu X., Zhang Q. ve Chen Y., Experimental study on organic Rankine cycle for low grade thermal energy recovery, Applied Thermal Engineering, 94, 221-227, 2016.
  • Tozlu A., Özahi E. ve Abuşoğlu A., Waste to Energy Technologies for Municipal Solid Waste Managemenet in Gaziantep, Renewable and Sustainable Energy Reviews, 54, 809–815, 2016.
  • Abuşoğlu A. ve Kanoğlu M., Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part1 – Formulations, Applied Thermal Engineering, 29, 234-241, 2009.
  • Tozlu A., Özahi E. ve Abuşoğlu A., Energetic and Exergetic Analyses of a Solid Waste Power Plant using Aspen Plus, International Journal of Energy, 10, 44–47, 2016.

Year 2018, Volume 33, Issue 3, 917 - 928, 14.08.2018
https://doi.org/10.17341/gazimmfd.416394

Abstract

References

  • Olumayegun O., Wang M. ve Kelsall G.., Closed-cycle gas turbine for power generation: A state-of-the-art review, Fuel,180, 694-717, 2016.
  • Traverso A., Massardo A.F. ve Scarpellini R., Externally fired micro-gas turbine: modelling and experimental performance, Applied Thermal Engineering, 26, 1935–1941, 2006.
  • Wang J., Sun Z., Dai Y. ve Ma S., Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network, Applied Energy, 87, 1317–1324, 2010.
  • Casella F. ve Colonna P., Development of a Modelica dynamic model of solar supercritical CO2 Brayton cycle power plants for control studies, 2011.
  • Garg P., Kumar P. ve Srinivasan K., Supercritical carbon dioxide Brayton cycle for concentrated solar power, Journal of Supercritical Fluids, 76, 54-60, 2013.
  • Muto Y., Aritomi M., Ishizuka T. ve Watanabe N., Comparison of supercritical CO2 gas turbine cycle and Brayton CO2 gas turbine for solar thermal power plant, 2014.
  • Manente G.. ve Lazzaretto A., Innovative biomass to power conversion systems based on cascaded supercritical CO2 Brayton cycles, Biomass Bioenergy, 69, 155–168, 2014.
  • Reuters Echogen Power Systems, Waste heat recovery system available as turnkey solution 1, 2014-2015.
  • Sánchez D., Muñoz de Escalona J.M., Chacartegui R., Muñoz A. ve Sánchez T., A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology, Journal of Power Sources, 196, 4347–4354, 2011.
  • Bhinder F.S., Calay R., Mustafa M.Y., Al-Zubaidy S. ve Holdo A.E., A hybrid powerplant to moderate carbon emissions, International Journal of Research Review and Application Science, 6, 124-131, 2011.
  • Munoz D.E., Jose M., Chacartegui R., Sánchez D. ve Sánchez T., The potential of the supercritical carbon dioxide cycle in high temperature fuel cell hybrid systems, 2011.
  • Ahmadi M.H., Mehrpooya M. ve Pourfayaz F., Exergoeconomic analysis and multi objective optimization of performance of a Carbon dioxide power cycle driven by geothermal energy with liquefied natural gas as its heat sink, Energy Conversion and Management, 119, 422–434, 2016.
  • Akbari A.D. ve Mahmoudi S.M.S., Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle, Energy, 78, 501-512, 2014.
  • Kim M.S., Ahn Y., Kim B. ve Lee J.I., Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle, Energy, 111, 893-909, 2016.
  • Nami H., Mahmoudi S.M.S. ve Nemati A., Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2), Applied Thermal Engineering, 110, 1315–1330, 2017.
  • Wang X. ve Dai Y., An exergoeconomic assessment of waste heat recovery from a Gas Turbine-Modular Helium Reactor using two transcritical CO2 cycles, Energy Conversion and Management, 126, 561–572, 2016.
  • Drescher U. ve Brüggemann D., Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants, Applied Thermal Engineering, 27, 223–228, 2007.
  • Hung T. C., Wang S. K., Kuo C. H., Pei B. S. ve Tsai K. F., A study of organic working fluids on system efficiency of an ORC using low-grade energy sources, Energy, 35, 1403-1411, 2010.
  • Bao J. ve Zhao L., A review of working fluid and expander selections for organic Rankine cycle, Renewable and Sustainable Energy Reviews, 24, 325–342, 2013.
  • Kaşka Ö., Energy and exergy analysis of an organic Rankine for power generation from waste heat recovery in steel industry, Energy Conversion Management, 77, 108-117, 2014.
  • Tchanche B. F., Pétrissans M. ve Papadakis G., Heat resources and organic Rankine cycle machines, Renewable and Sustainable Energy Reviews, 39, 1185-1199, 2014.
  • He C., Liu C., Zhou M., Xie H., Xu X., Wu S. ve Li Y., A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources, Energy, 68, 283-291, 2014.
  • Di Maria F., Micale C. ve Sordi A., Electrical energy production from the integrated aerobic-anaerobic treatment of organic waste by ORC, Renewable Energy, 66, 461-467, 2014.
  • Galloni E., Fontana G. ve Staccone S., Design and experimental analysis of a mini ORC (organic Rankine cycle) power plant based on R245fa working fluid, Energy, 90, 768-775, 2015.
  • Andreasen J.G., Larsen U., Knudsen T. ve Haglind F., Design and optimization of a novel organic Rankine cycle with improved boiling process, Energy, 91, 48-59, 2015.
  • Desai N. B. ve Bandyopadhyay S., Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle, Applied Thermal Engineering, 95, 471-481, 2016.
  • Muhammad U., Imran M., Lee D. H. ve Park B., S., Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam, Energy Conversion and Management, 103, 1089-1100, 2015.
  • Özdil N. F. T., Segmen M. R. ve Tantekin A., Thermodynamic analysis of an Organic Rankine Cycle (ORC) based on industrial data, Applied Thermal Engineering, 91, 43-52, 2015.
  • Li D., Zhang S. ve Wang G., Selection of organic Rankine cycle working fluids in the low-temperature waste heat utilization, Journal of Hydrodynamics, 27, 458-464, 2015.
  • Li G., Organic Rankine cycle performance evaluation and thermoeconomic assessment with various applications part I: Energy and exergy performance evaluation, Renewable and Sustainable Energy Reviews, 53, 477-499, 2016.
  • Pu W., Yue C., Han D., He W., Liu X., Zhang Q. ve Chen Y., Experimental study on organic Rankine cycle for low grade thermal energy recovery, Applied Thermal Engineering, 94, 221-227, 2016.
  • Tozlu A., Özahi E. ve Abuşoğlu A., Waste to Energy Technologies for Municipal Solid Waste Managemenet in Gaziantep, Renewable and Sustainable Energy Reviews, 54, 809–815, 2016.
  • Abuşoğlu A. ve Kanoğlu M., Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part1 – Formulations, Applied Thermal Engineering, 29, 234-241, 2009.
  • Tozlu A., Özahi E. ve Abuşoğlu A., Energetic and Exergetic Analyses of a Solid Waste Power Plant using Aspen Plus, International Journal of Energy, 10, 44–47, 2016.

Details

Journal Section Makaleler
Authors

Emrah ÖZAHİ
0000-0003-3940-9500


Alperen TOZLU
0000-0002-2610-5279


Ayşegül ABUŞOĞLU This is me

Publication Date August 14, 2018
Application Date January 5, 2017
Acceptance Date
Published in Issue Year 2018, Volume 33, Issue 3

Cite

Bibtex @ { gazimmfd416394, journal = {Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi}, issn = {1300-1884}, eissn = {1304-4915}, address = {}, publisher = {Gazi University}, year = {2018}, volume = {33}, pages = {917 - 928}, doi = {10.17341/gazimmfd.416394}, title = {Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi}, key = {cite}, author = {Özahi, Emrah and Tozlu, Alperen and Abuşoğlu, Ayşegül} }
APA Özahi, E. , Tozlu, A. & Abuşoğlu, A. (2018). Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi . Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi , 33 (3) , 917-928 . DOI: 10.17341/gazimmfd.416394
MLA Özahi, E. , Tozlu, A. , Abuşoğlu, A. "Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi" . Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33 (2018 ): 917-928 <https://dergipark.org.tr/en/pub/gazimmfd/issue/38855/416394>
Chicago Özahi, E. , Tozlu, A. , Abuşoğlu, A. "Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33 (2018 ): 917-928
RIS TY - JOUR T1 - Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi AU - Emrah Özahi , Alperen Tozlu , Ayşegül Abuşoğlu Y1 - 2018 PY - 2018 N1 - doi: 10.17341/gazimmfd.416394 DO - 10.17341/gazimmfd.416394 T2 - Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi JF - Journal JO - JOR SP - 917 EP - 928 VL - 33 IS - 3 SN - 1300-1884-1304-4915 M3 - doi: 10.17341/gazimmfd.416394 UR - https://doi.org/10.17341/gazimmfd.416394 Y2 - 2021 ER -
EndNote %0 Journal of the Faculty of Engineering and Architecture of Gazi University Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi %A Emrah Özahi , Alperen Tozlu , Ayşegül Abuşoğlu %T Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi %D 2018 %J Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi %P 1300-1884-1304-4915 %V 33 %N 3 %R doi: 10.17341/gazimmfd.416394 %U 10.17341/gazimmfd.416394
ISNAD Özahi, Emrah , Tozlu, Alperen , Abuşoğlu, Ayşegül . "Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33 / 3 (August 2018): 917-928 . https://doi.org/10.17341/gazimmfd.416394
AMA Özahi E. , Tozlu A. , Abuşoğlu A. Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2018; 33(3): 917-928.
Vancouver Özahi E. , Tozlu A. , Abuşoğlu A. Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2018; 33(3): 917-928.
IEEE E. Özahi , A. Tozlu and A. Abuşoğlu , "Organik Rankine çevrimi entegre edilmiş S-CO2 kullanılan bir gaz türbin çevriminin termodinamik ve termoekonomik analizi", Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 33, no. 3, pp. 917-928, Aug. 2018, doi:10.17341/gazimmfd.416394