Research Article
BibTex RIS Cite

Işınım soğutma sistemlerindeki yoğuşma probleminin çözümüne yönelik yeni bir yöntem ve ısıl konfor incelemesi

Year 2018, Volume: 33 Issue: 3, 1055 - 1072, 14.08.2018
https://doi.org/10.17341/gazimmfd.416468

Abstract

Bu çalışmada, ışınım soğutma sistemlerinde görülen yoğuşma probleminin çözümüne yönelik, pasif nem alma paneli önerilmiştir. Bu yöntem, var olan nem kontrolü çözümlerine göre ekonomik olmasının yanında, ışınım soğutma sistemlerine kolayca entegre edilebilecek yapıdadır. Çalışma prensibi; mahal içerisindeki duyulur ısı yükü ışınım soğutma sistemi ile karşılanırken, mahaldeki gizli ve duyulur ısının bir kısmı yoğuşturucu panelle karşılanacaktır. Yoğuşturucu panel, ışınım sistemine seri bir şekilde bağlanarak aynı tesisattan beslenecektir. Yoğuşturucu panelin isi iletim katsayısı yüksek malzemeden üretildiğinden, aynı su sıcaklığında yoğuşturucu panel yüzeyi çiğ noktası sıcaklığı altında kalırken, ışınım panellerinin yüzeyi üzerinde kalacaktır. Bu sayede yoğuşma sadece yoğuşturucu panel yüzeyinde gerçekleşecektir. Bu çalışmada, önerilen yoğuşturucu panelin ısıl konfor performansı deneysel olarak incelenmiştir. Bu amaçla, gerçek boyutlarda bir odayı temsil eden çevre ve oda ısıl şartları hassas bir şekilde kontrol edilebilen bir deney odası kurulmuştur. Deneylerde, aynı başlangıç hava sıcaklığı ve bağıl nem oranı  için, farklı yoğuşturucu panel yüzey sıcaklıkları ve aynı yoğuşturucu panel yüzey sıcaklığı  için farklı başlangıç bağıl nem oranları incelenmiştir. Elde edilen sonuçlar kullanılarak, mahal içerisindeki hava sıcaklık, bağıl nem oranı dağılımları ve genel konfor şartları irdelenmiştir. Ayrıca yoğuşturucu panel tüm deneysel durumlarda, mahal içerisini ideal konfor şartlarına getirebilmiştir. 

References

  • Okamoto S., Kitora H., Yamaguchi H., Oka T., A simplified calculation method for estimating heat flux from ceiling radiant panels, Energy and Buildings, 42, 29-33, 2010.
  • Koca A., Gemici Z., Topacoglu Y., Cetin G., Acet R.C., Kanbur B.B., Experimental investigation of heat transfer coefficients between hydronic radiant heated wall and room, Energy and Buildings, 82, 211-221, 2014.
  • Acikgoz O., Cebi A., Celen A., Dalkilic A., Koca A., Cetin G., Gemici Z., Wongwises S., A Novel ANN-Based Approach to Estimate Heat Transfer Coefficients in Radiant Wall Heating Systems, Energy and Buildings, 144, 401- 415, 2017.
  • Koca A., Gemici Z., Bedir K., Thermal comfort analysis of novel low exergy radiant heating cooling system and energy saving potential comparing to conventional systems, Progress in Exergy, Energy and Environment, Cilt 1, Editor: Ibrahim Dincer, Springer International Publishing, Switzerland, 38, 435-445, 2014.
  • Erikci Çelik S.N., Zorer Gedik G., Parlakyildiz B., Koca A., Çetin M.G, Gemici Z., The performance evaluation of the modular design of hybrid wall with surface heating and cooling system, A/Z ITU Journal of the Faculty of Architecture, 13 (12), 31-37, 2016. (DOI: 10.5505/itujfa.2016.48658)
  • Kanbur B.B., Atayılmaz S.O., Koca A., Gemici Z., Teke İ., Işınım ısıtma panellerinde açığa çıkan ısı akılarının sayısal olarak incelenmesi, 19. Ulusal Isı Bilimi ve Tekniği Kongresi, Samsun, 1498-1502, 9-12 Eylül, 2013.
  • Koca A., Gemici Z., Topaçoğlu Y., Çetin G., Acet R.C., Kanbur B.B., Işınım ısıtma ve soğutma sistemlerinin ısıl konfor analizleri, 11. Ulusal tesisat mühendisliği kongresi, İzmir, 2025-2042, 17-20 Nisan, 2013.
  • Cholewa T., Anasiewicz R., Siuta-Olcha A., Skwarczynski A., On the heat transfer coefficients between heated/cooled radiant ceiling and room, Applied Thermal Engineering, 117, 76-84, 2017.
  • Imanari T., Omori T., Bogaki K., Thermal comfort and energy consumption of the radiant ceiling panel system, comparison with the conventional all-air system, Energy and Buildings, 30, 167-175, 1999.
  • Catalina T., Virgone J., Kuznik F., Evaluation of thermal comfort using combined CFD and experimantation study in a test room equipped with a cooling ceiling, Building and Environment, 44, 1740-1750, 2009.
  • Stetiu C., Energy and peak power savings potential of radiant cooling systems in U.S. commercial buildings, Energy and Buildings, 30, 127-138, 1999.
  • Milorad B., Dragan C., Energy, cost, and CO2 emission comparison between radiant wall panel systems and radiator systems, Energy and Buildings, 54, 496-502, 2012.
  • Liu J., Aizawa H., Yoshino H., CFD prediction of surface condensation on walls and its experimental validation, Building and Environment, 39, 905-911, 2004.
  • Niu J.L.Z., Zhang L.Z., Zuo H.G., Energy saving potential of chilled ceiling combined with desiccant cooling in hot and humid climates, Energy and Buildings, 34, 487-495, 2002.
  • Xiaoli H., Guoqiang Z., Youming C., Shenghua Z., Demetrios J.M., A combined system of chilled ceiling, displacement ventilation and desiccant dehumidification, Building and Environment, 42, 3298-3308, 2007.
  • Catalina T., Virgone J., Dynamic simulation regarding the condensation risk on a cooling ceiling installed in an office room, Proceedings Building Simulation, 310-314, 2007.
  • Zhang L.Z., Energy performance of independent air dehumidification systems with energy recovery measures, Energy, 31, 1228-1242, 2006
  • Vangtook P., Chirarattananon S., An experimental investigation of application of radiant cooling in hot humid climate, Energy and Buildings, 38, 273-285, 2006.
  • Song D.S., Kim T.Y., Song S.W., Hwang S.H.S.B., Performance evaluation of a radiant floor cooling system integrated with dehumidified ventilation, Applied Thermal Engineering, 28 (11), 1299-1311, 2008.
  • Hao X., Zhang G., Chen Y., Zou S., Moschandreas D.J., A combined system of chilled ceiling, displacement ventilation and desiccant dehumidification, Building and Environment, 42, 3298-3308, 2007.
  • Binghooth A.S., Zainal Z.A., Performance of desiccant dehumidification with hydronic radiant cooling system in hot humid climates, Energy and Buildings, 51, 1-5, 2012.
  • Zhang L.Z., Niu J.L., Indoor humidity behaviors associated with decoupled cooling inhot and humid climates, Building and Environment, 38, 99-107, 2003.
  • Niu J.L., Zhang Z.L., Zuo H.G., Energy saving potential of chilled-ceiling combined with desiccant cooling in hot and humid climate, Energy and Buildings, 34, 487-495, 2002.
  • Zainal, Z.A., Binghooth A.S., Desiccant Dehumidification Integrated with Hydronic Radiant Cooling System, Cilt 1, Editor: Nóbrega C. E. L., Springer London, London, 217-247, 2013.
  • Ameen A., Mahmud K., Desiccant dehumidification with hydronic radiant cooling system for air-conditioning applications in humid tropic climates, ASHARE Transactions, 111 (2), 225-237, 2005.
  • Liu X.H., Chang X.M., Xia J.J., Jiang Y., Performance analysis on the internally cooled dehumidifier using liquid desiccant, Building and Environment, 44 (2), 299-308, 2009.
  • Mumma S.A., Chilled ceiling condensation control, in: ASHRAE IAQ Applications, Energy and Building, 5, 22-23, 2003.
  • Fauchoux M., Bansa M., Talukdar P., Simonson C.J., Torvi D., Testing and modelling of a novel ceiling panel for maintaining space relative humidity by moisture transfer, International Journal of Heat and Mass Transfer, 53, 3961-3968, 2010.
  • ASTM Standard E104, Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions, ASTM, USA, 2007.
  • Ge F., Guo X., Liu H., Wang J., Lu C., Energy performance of air cooling systems considering indoor temperature and relative humidity in different climate zones in China, Energy and Buildings, 64, 145-153, 2013.
  • Koca A., Atayilmaz O., Agra O., Experimental investigation of heat transfer and dehumidifying performance of novel condensing panel, Energy and Building, 129, 120-137, 2016.
  • Koca A., Düşey bir panel yüzeyinde doğal taşinim şartlarinda yoğuşmanin incelenmesi, Doktora tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2015.
  • EN 1264-5 Standard, Water based surface embedded heating and cooling systems. Part 5: heating and cooling surfaces embedded in floors, ceilings and walls - determination of the thermal output, USA, 2008.
  • BS EN 14037-5 Standard, Free hanging heating and cooling surfaces for water with a temperature below 120°C. Open or closed heated ceiling surfaces. Test method for thermal output, USA, 2016.
  • DIN 4102 - Part 1, B2, Reaction to fire tests - Ignitability of building products subjected to direct impingement of flame, Germany, 1998.
  • ANSI/ASHRAE Standard 138-2005, Method of Testing for Rating Ceiling Panelsfor Sensible Heating and Cooling, USA, 2005.
  • DIN 4108 - Part3, Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 3: Klimabedingter Feuchteschutz; Anforderungen, Berechnungsverfahren und Hinweise für Planung und Ausführung, Germany, 2003.
  • Fanger P.O., Thermal Comfort, Analysis and Application in Environment Engineering. Danish Technical Press, Copenhagen, 1970.
  • EN ISO 7730, Ergonomics of thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Organization for Standardization, Geneva, 2005.
  • ASHRAE Handbook-HVAC Systems and Equipment, American Society of Heating Refrigerating and Air-Conditioning Engineers. Inc., ASHRAE, Atlanta, 2008.
  • ASHRAE Standart 55, Thermal environment conditions for human occupancy, ASHRAE, USA, 2003.
Year 2018, Volume: 33 Issue: 3, 1055 - 1072, 14.08.2018
https://doi.org/10.17341/gazimmfd.416468

Abstract

References

  • Okamoto S., Kitora H., Yamaguchi H., Oka T., A simplified calculation method for estimating heat flux from ceiling radiant panels, Energy and Buildings, 42, 29-33, 2010.
  • Koca A., Gemici Z., Topacoglu Y., Cetin G., Acet R.C., Kanbur B.B., Experimental investigation of heat transfer coefficients between hydronic radiant heated wall and room, Energy and Buildings, 82, 211-221, 2014.
  • Acikgoz O., Cebi A., Celen A., Dalkilic A., Koca A., Cetin G., Gemici Z., Wongwises S., A Novel ANN-Based Approach to Estimate Heat Transfer Coefficients in Radiant Wall Heating Systems, Energy and Buildings, 144, 401- 415, 2017.
  • Koca A., Gemici Z., Bedir K., Thermal comfort analysis of novel low exergy radiant heating cooling system and energy saving potential comparing to conventional systems, Progress in Exergy, Energy and Environment, Cilt 1, Editor: Ibrahim Dincer, Springer International Publishing, Switzerland, 38, 435-445, 2014.
  • Erikci Çelik S.N., Zorer Gedik G., Parlakyildiz B., Koca A., Çetin M.G, Gemici Z., The performance evaluation of the modular design of hybrid wall with surface heating and cooling system, A/Z ITU Journal of the Faculty of Architecture, 13 (12), 31-37, 2016. (DOI: 10.5505/itujfa.2016.48658)
  • Kanbur B.B., Atayılmaz S.O., Koca A., Gemici Z., Teke İ., Işınım ısıtma panellerinde açığa çıkan ısı akılarının sayısal olarak incelenmesi, 19. Ulusal Isı Bilimi ve Tekniği Kongresi, Samsun, 1498-1502, 9-12 Eylül, 2013.
  • Koca A., Gemici Z., Topaçoğlu Y., Çetin G., Acet R.C., Kanbur B.B., Işınım ısıtma ve soğutma sistemlerinin ısıl konfor analizleri, 11. Ulusal tesisat mühendisliği kongresi, İzmir, 2025-2042, 17-20 Nisan, 2013.
  • Cholewa T., Anasiewicz R., Siuta-Olcha A., Skwarczynski A., On the heat transfer coefficients between heated/cooled radiant ceiling and room, Applied Thermal Engineering, 117, 76-84, 2017.
  • Imanari T., Omori T., Bogaki K., Thermal comfort and energy consumption of the radiant ceiling panel system, comparison with the conventional all-air system, Energy and Buildings, 30, 167-175, 1999.
  • Catalina T., Virgone J., Kuznik F., Evaluation of thermal comfort using combined CFD and experimantation study in a test room equipped with a cooling ceiling, Building and Environment, 44, 1740-1750, 2009.
  • Stetiu C., Energy and peak power savings potential of radiant cooling systems in U.S. commercial buildings, Energy and Buildings, 30, 127-138, 1999.
  • Milorad B., Dragan C., Energy, cost, and CO2 emission comparison between radiant wall panel systems and radiator systems, Energy and Buildings, 54, 496-502, 2012.
  • Liu J., Aizawa H., Yoshino H., CFD prediction of surface condensation on walls and its experimental validation, Building and Environment, 39, 905-911, 2004.
  • Niu J.L.Z., Zhang L.Z., Zuo H.G., Energy saving potential of chilled ceiling combined with desiccant cooling in hot and humid climates, Energy and Buildings, 34, 487-495, 2002.
  • Xiaoli H., Guoqiang Z., Youming C., Shenghua Z., Demetrios J.M., A combined system of chilled ceiling, displacement ventilation and desiccant dehumidification, Building and Environment, 42, 3298-3308, 2007.
  • Catalina T., Virgone J., Dynamic simulation regarding the condensation risk on a cooling ceiling installed in an office room, Proceedings Building Simulation, 310-314, 2007.
  • Zhang L.Z., Energy performance of independent air dehumidification systems with energy recovery measures, Energy, 31, 1228-1242, 2006
  • Vangtook P., Chirarattananon S., An experimental investigation of application of radiant cooling in hot humid climate, Energy and Buildings, 38, 273-285, 2006.
  • Song D.S., Kim T.Y., Song S.W., Hwang S.H.S.B., Performance evaluation of a radiant floor cooling system integrated with dehumidified ventilation, Applied Thermal Engineering, 28 (11), 1299-1311, 2008.
  • Hao X., Zhang G., Chen Y., Zou S., Moschandreas D.J., A combined system of chilled ceiling, displacement ventilation and desiccant dehumidification, Building and Environment, 42, 3298-3308, 2007.
  • Binghooth A.S., Zainal Z.A., Performance of desiccant dehumidification with hydronic radiant cooling system in hot humid climates, Energy and Buildings, 51, 1-5, 2012.
  • Zhang L.Z., Niu J.L., Indoor humidity behaviors associated with decoupled cooling inhot and humid climates, Building and Environment, 38, 99-107, 2003.
  • Niu J.L., Zhang Z.L., Zuo H.G., Energy saving potential of chilled-ceiling combined with desiccant cooling in hot and humid climate, Energy and Buildings, 34, 487-495, 2002.
  • Zainal, Z.A., Binghooth A.S., Desiccant Dehumidification Integrated with Hydronic Radiant Cooling System, Cilt 1, Editor: Nóbrega C. E. L., Springer London, London, 217-247, 2013.
  • Ameen A., Mahmud K., Desiccant dehumidification with hydronic radiant cooling system for air-conditioning applications in humid tropic climates, ASHARE Transactions, 111 (2), 225-237, 2005.
  • Liu X.H., Chang X.M., Xia J.J., Jiang Y., Performance analysis on the internally cooled dehumidifier using liquid desiccant, Building and Environment, 44 (2), 299-308, 2009.
  • Mumma S.A., Chilled ceiling condensation control, in: ASHRAE IAQ Applications, Energy and Building, 5, 22-23, 2003.
  • Fauchoux M., Bansa M., Talukdar P., Simonson C.J., Torvi D., Testing and modelling of a novel ceiling panel for maintaining space relative humidity by moisture transfer, International Journal of Heat and Mass Transfer, 53, 3961-3968, 2010.
  • ASTM Standard E104, Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions, ASTM, USA, 2007.
  • Ge F., Guo X., Liu H., Wang J., Lu C., Energy performance of air cooling systems considering indoor temperature and relative humidity in different climate zones in China, Energy and Buildings, 64, 145-153, 2013.
  • Koca A., Atayilmaz O., Agra O., Experimental investigation of heat transfer and dehumidifying performance of novel condensing panel, Energy and Building, 129, 120-137, 2016.
  • Koca A., Düşey bir panel yüzeyinde doğal taşinim şartlarinda yoğuşmanin incelenmesi, Doktora tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2015.
  • EN 1264-5 Standard, Water based surface embedded heating and cooling systems. Part 5: heating and cooling surfaces embedded in floors, ceilings and walls - determination of the thermal output, USA, 2008.
  • BS EN 14037-5 Standard, Free hanging heating and cooling surfaces for water with a temperature below 120°C. Open or closed heated ceiling surfaces. Test method for thermal output, USA, 2016.
  • DIN 4102 - Part 1, B2, Reaction to fire tests - Ignitability of building products subjected to direct impingement of flame, Germany, 1998.
  • ANSI/ASHRAE Standard 138-2005, Method of Testing for Rating Ceiling Panelsfor Sensible Heating and Cooling, USA, 2005.
  • DIN 4108 - Part3, Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 3: Klimabedingter Feuchteschutz; Anforderungen, Berechnungsverfahren und Hinweise für Planung und Ausführung, Germany, 2003.
  • Fanger P.O., Thermal Comfort, Analysis and Application in Environment Engineering. Danish Technical Press, Copenhagen, 1970.
  • EN ISO 7730, Ergonomics of thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. International Organization for Standardization, Geneva, 2005.
  • ASHRAE Handbook-HVAC Systems and Equipment, American Society of Heating Refrigerating and Air-Conditioning Engineers. Inc., ASHRAE, Atlanta, 2008.
  • ASHRAE Standart 55, Thermal environment conditions for human occupancy, ASHRAE, USA, 2003.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Aliihsan Koca

Publication Date August 14, 2018
Submission Date May 5, 2017
Acceptance Date February 5, 2018
Published in Issue Year 2018 Volume: 33 Issue: 3

Cite

APA Koca, A. (2018). Işınım soğutma sistemlerindeki yoğuşma probleminin çözümüne yönelik yeni bir yöntem ve ısıl konfor incelemesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(3), 1055-1072. https://doi.org/10.17341/gazimmfd.416468
AMA Koca A. Işınım soğutma sistemlerindeki yoğuşma probleminin çözümüne yönelik yeni bir yöntem ve ısıl konfor incelemesi. GUMMFD. August 2018;33(3):1055-1072. doi:10.17341/gazimmfd.416468
Chicago Koca, Aliihsan. “Işınım soğutma Sistemlerindeki yoğuşma Probleminin çözümüne yönelik Yeni Bir yöntem Ve ısıl Konfor Incelemesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33, no. 3 (August 2018): 1055-72. https://doi.org/10.17341/gazimmfd.416468.
EndNote Koca A (August 1, 2018) Işınım soğutma sistemlerindeki yoğuşma probleminin çözümüne yönelik yeni bir yöntem ve ısıl konfor incelemesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33 3 1055–1072.
IEEE A. Koca, “Işınım soğutma sistemlerindeki yoğuşma probleminin çözümüne yönelik yeni bir yöntem ve ısıl konfor incelemesi”, GUMMFD, vol. 33, no. 3, pp. 1055–1072, 2018, doi: 10.17341/gazimmfd.416468.
ISNAD Koca, Aliihsan. “Işınım soğutma Sistemlerindeki yoğuşma Probleminin çözümüne yönelik Yeni Bir yöntem Ve ısıl Konfor Incelemesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 33/3 (August 2018), 1055-1072. https://doi.org/10.17341/gazimmfd.416468.
JAMA Koca A. Işınım soğutma sistemlerindeki yoğuşma probleminin çözümüne yönelik yeni bir yöntem ve ısıl konfor incelemesi. GUMMFD. 2018;33:1055–1072.
MLA Koca, Aliihsan. “Işınım soğutma Sistemlerindeki yoğuşma Probleminin çözümüne yönelik Yeni Bir yöntem Ve ısıl Konfor Incelemesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 33, no. 3, 2018, pp. 1055-72, doi:10.17341/gazimmfd.416468.
Vancouver Koca A. Işınım soğutma sistemlerindeki yoğuşma probleminin çözümüne yönelik yeni bir yöntem ve ısıl konfor incelemesi. GUMMFD. 2018;33(3):1055-72.