BibTex RIS Cite

Pompaj depolamalı hibrid enerji sistemi optimizasyonu -Türkiye için vaka analizi

Year 2019, Volume: 34 Issue: 1, 53 - 68, 26.03.2019
https://doi.org/10.17341/gazimmfd.416461

Abstract

Fosil yakıtların elektrik üretimindeki payını azaltmak için yenilenebilir enerji kaynakları içeren enerji modellerine ihtiyaç duyulmaktadır. Ancak, yenilenebilir enerji kaynakları genellikle düzenli olmayan ve aralıklı enerji kaynaklarıdır ve kesin olarak tahmin edilemezler. Alternatif kaynakların ortak kullanımını mümkün kılan hibrid sistemler tasarlamak ve enerji deposu kullanmak, bu kaynakların kullanımıyla ilgili güçlükleri azaltmak ve hem maliyet hem de güvenilirlik açısından etkin sistemler tasarlamak için kullanılan yöntemlerdendir. Dünyada özellikle büyük ölçekli sistemlerde en yaygın olarak kullanılan depolama biçimi, enerjinin pompaj depolamalı hidroelektrik santrallerde (PHES) suyun potansiyel enerjisi formunda depolanmasıdır. PHES’ler, sisteme dışarıdan su girişi olması durumunda karışık, olmaması durumunda ise saf sistemler olarak tasarlanabilirler. Bu çalışma, her iki tip PHES sisteminin kaynaklardaki ve talepteki belirsizlikleri de göz önüne alacak şeklide iki-aşamalı stokastik programlama modelini sunmaktadır. Bu çalışma ile literatürde ilk kez, belirli bir elektrik talebini karşılamak için kurulabilecek güneş enerjisi üretim tesisinin ayrı ayrı saf PHES ve karışık PHES ile desteklendiği hibrid sistemler ele alınmış ve sonuçlar şu an hiç PHES sistemi olmayan ve yenilenebilir enerji kaynaklarının yüksek potansiyeline rağmen enerji üretimi yüksek oranda fosil yakıtlara dayanan Türkiye için bir vaka analizi şeklinde sunulmuştur.

References

  • Kocaman A.S., Essays on infrastructure design and planning for clean energy systems. 2014.
  • Belfkira R., Zhang L., Barakat G., Optimal sizing study of hybrid wind/PV/diesel power generation unit. Solar Energy, 85 (1), 100-10, 2011.
  • Kaabeche A., Ibtiouen R., Techno-economic optimization of hybrid photovoltaic/wind/diesel/battery generation in a stand-alone power system, Solar Energy, 103, 171-82, 2014.
  • Yang H., Wei Z., Chengzhi L., Optimal design and techno-economic analysis of a hybrid solar–wind power generation system, Applied Energy, 86 (2), 163-169, 2009.
  • Zhao B., Zhang X., Li P., Wang K., Xue M., Wang C., Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island, Applied Energy, 113, 1656-1666, 2014.
  • González A., Riba J.R., Rius A., Puig R., Optimal sizing of a hybrid grid-connected photovoltaic and wind power system, Applied Energy, 154, 752-762, 2015.
  • Senjyu T., Hayashi D., Yona A., Urasaki N., Funabashi T., Optimal configuration of power generating systems in isolated island with renewable energy, Renewable Energy, 32 (11), 1917-1933, 2007.
  • Sharafi M., ElMekkawy T.Y., Stochastic optimization of hybrid renewable energy systems using sampling average method, Renewable and Sustainable Energy Reviews, 52, 1668-1679, 2015.
  • Powell W.B., George A., Simao H., Scott W., Lamont A., Stewart J., Smart: a stochastic multiscale model for the analysis of energy resources, technology, and policy, INFORMS Journal on Computing, 24 (4), 665-682, 2012.
  • Ekren O., Ekren B.Y., Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology, Applied Energy, 85 (11), 1086-1101, 2008.
  • Ekren O., Ekren B.Y., Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing, Applied Energy, 87 (2), 592-598, 2010.
  • Arun P., Banerjee R., Bandyopadhyay S., Optimum sizing of photovoltaic battery systems incorporating uncertainty through design space approach, Solar Energy, 83 (7),1013-1025, 2009.
  • Roy A., Kedare S.B., Bandyopadhyay S., Optimum sizing of wind-battery systems incorporating resource uncertainty, Applied Energy, 87 (8), 2712-2727, 2010.
  • Kuznia L., Zeng B., Centeno G., Miao Z., Stochastic optimization for power system configuration with renewable energy in remote areas, Annals of Operations Research, 210 (1), 411-432, 2013.
  • Kocaman A.S., Abad C., Troy T.J., Huh W.T., Modi V., A stochastic model for a macroscale hybrid renewable energy system, Renewable and Sustainable Energy Reviews, 54, 688-703, 2016.
  • Kocaman A.S., Modi V., Value of Pumped-Hydro Storage in a Hybrid Energy Generation and Allocation System, Preprint, http://www.optimization-online.org/DB_HTML/2017/04/5979.html, 2017.
  • Díaz-González F., Sumper A., Gomis-Bellmunt O., Villafáfila-Robles R., A review of energy storage technologies for wind power applications, Renewable and Sustainable Energy Reviews. 16 (4), 2154-2171, 2012.
  • Pérez-Díaz J.I., Chazarra M., García-González J., Cavazzini G., Stoppato A., Trends and challenges in the operation of pumped-storage hydropower plants, Renewable and Sustainable Energy Reviews, 44, 767-784, 2015.
  • Deane J.P., Gallachóir B.Ó., McKeogh E.J., Techno-economic review of existing and new pumped hydro energy storage plant, Renewable and Sustainable Energy Reviews, 14 (4), 1293-1302, 2010.
  • Sertkaya A.A., Saraç M., Omar M.A., Pompaj depolamalı hidroelektrik santrallerin Türkiye için önemi, Gazi Mühendislik Bilimleri Dergisi, 1 (3), 2016.
  • Rehman S., Al-Hadhrami L.M., Alam M.M., Pumped hydro energy storage system: A technological review. Renewable and Sustainable Energy Reviews, 44, 586-598, 2015.
  • Kapsali M., Anagnostopoulos J.S., Kaldellis J.K., Wind powered pumped-hydro storage systems for remote islands: a complete sensitivity analysis based on economic perspectives, Applied energy, 99, 430-444, 2012.
  • Katsaprakakis D.A., Christakis D.G., Pavlopoylos K., Stamataki S., Dimitrelou I., Stefanakis I., Spanos P., Introduction of a wind powered pumped storage system in the isolated insular power system of Karpathos–Kasos, Applied Energy, 97, 38-48, 2012.
  • Brown P.D., Lopes J.P., Matos M.A., Optimization of pumped storage capacity in an isolated power system with large renewable penetration, IEEE Transactions on Power systems, 23(2), 523-531, 2008.
  • Ma T., Yang H., Lu L., Peng J., Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization, Applied energy, 137, 649-659, 2015.
  • http://www.eie.gov.tr/yenilenebilir/h_hidrolik_nedir.aspx. Erişim Tarihi: 24/2/2017.
  • Elektrik İşleri Etüt İdaresi Genel Müdürlüğü İlk Etüt Raporları, 2008.
  • Kocaman A.S., Abad C., Troy T.J., Huh W.T., Modi V., A stochastic model for a macroscale hybrid renewable energy system, Renewable and Sustainable Energy Reviews, 54, 688-703, 2016.
  • H. Energy, “Hybrid renewable and distributed generation system design software.” http://www.homerenergy.com/. Erişim Tarihi:Temmuz 2016.
  • http://www.epdk.org.tr/TR/Dokumanlar/Elektrik/DagitimSirketleriProfiller. Erişim Tarihi: Temmuz 2016.
  • http://www-01.ibm.com/software/info/ilog/. Erişim Tarihi: Mart 2014.
  • Lempérière F., Dam design and construction, reservoirs and balancing lakes. http://www.hydrocoop.org. Yayın tarihi Temmuz 2012. Erişim Tarihi: Mart 2014.
  • Keller A. A., Sakthivadivel R., Seckler D. W.,Water scarcity and the role of storage in development, 39, 2000.
  • OpenEI Transparent Cost Database. Erişim Tarihi: Mart 2014.
  • World Energy Perspective, Cost of Energy Technologies, World Energy, 2013.
  • http://www.windustry.org/how_much_do_wind_turbines_cost. Erişim Tarihi: Mart 2014.
  • Khan, M. J., Iqbal, M. T., Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland, Renewable energy, 30 (6), 835-854, 2005.
  • http://www.epdk.org.tr/TR/Dokumanlar/Elektrik/DagitimSirketleriProfiller. Erişim Tarihi: Haziran 2016.
  • http://www-01.ibm.com/software/info/ilog/. Erişim Tarihi: Mart 2014.
  • http://www.enerjiatlasi.com/hidroelektrik/oymapinar-baraji.html. Erişim Tarihi: Kasım 2016.
  • Kumar A., T. Schei, A. Ahenkorah, R. Caceres Rodriguez, J.-M. Devernay, M. Freitas, D. Hall, Å. Killingtveit, Z. Liu, 2011: Hydropower. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Elektrik İşleri Etüt İdaresi Genel Müdürlüğü İlk Etüt Raporları, 2008.
  • http://www.enerjiatlasi.com/hidroelektrik/oymapinar-baraji.html. Erişim Tarihi: 24/2/2017.
  • http://www.enerjiatlasi.com/hidroelektrik/manavgat-baraji.html. Erişim Tarihi: 24/2/2017.
  • http://www.imo.org.tr/resimler/ekutuphane/pdf/17634_33_28.pdf . Erişim Tarihi: 24/2/2017.
  • http://insaat.balikesir.edu.tr/dokumanlar/suyapilari/barajlar.pdf . Erişim Tarihi: 24/2/2017.
Year 2019, Volume: 34 Issue: 1, 53 - 68, 26.03.2019
https://doi.org/10.17341/gazimmfd.416461

Abstract

References

  • Kocaman A.S., Essays on infrastructure design and planning for clean energy systems. 2014.
  • Belfkira R., Zhang L., Barakat G., Optimal sizing study of hybrid wind/PV/diesel power generation unit. Solar Energy, 85 (1), 100-10, 2011.
  • Kaabeche A., Ibtiouen R., Techno-economic optimization of hybrid photovoltaic/wind/diesel/battery generation in a stand-alone power system, Solar Energy, 103, 171-82, 2014.
  • Yang H., Wei Z., Chengzhi L., Optimal design and techno-economic analysis of a hybrid solar–wind power generation system, Applied Energy, 86 (2), 163-169, 2009.
  • Zhao B., Zhang X., Li P., Wang K., Xue M., Wang C., Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island, Applied Energy, 113, 1656-1666, 2014.
  • González A., Riba J.R., Rius A., Puig R., Optimal sizing of a hybrid grid-connected photovoltaic and wind power system, Applied Energy, 154, 752-762, 2015.
  • Senjyu T., Hayashi D., Yona A., Urasaki N., Funabashi T., Optimal configuration of power generating systems in isolated island with renewable energy, Renewable Energy, 32 (11), 1917-1933, 2007.
  • Sharafi M., ElMekkawy T.Y., Stochastic optimization of hybrid renewable energy systems using sampling average method, Renewable and Sustainable Energy Reviews, 52, 1668-1679, 2015.
  • Powell W.B., George A., Simao H., Scott W., Lamont A., Stewart J., Smart: a stochastic multiscale model for the analysis of energy resources, technology, and policy, INFORMS Journal on Computing, 24 (4), 665-682, 2012.
  • Ekren O., Ekren B.Y., Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology, Applied Energy, 85 (11), 1086-1101, 2008.
  • Ekren O., Ekren B.Y., Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing, Applied Energy, 87 (2), 592-598, 2010.
  • Arun P., Banerjee R., Bandyopadhyay S., Optimum sizing of photovoltaic battery systems incorporating uncertainty through design space approach, Solar Energy, 83 (7),1013-1025, 2009.
  • Roy A., Kedare S.B., Bandyopadhyay S., Optimum sizing of wind-battery systems incorporating resource uncertainty, Applied Energy, 87 (8), 2712-2727, 2010.
  • Kuznia L., Zeng B., Centeno G., Miao Z., Stochastic optimization for power system configuration with renewable energy in remote areas, Annals of Operations Research, 210 (1), 411-432, 2013.
  • Kocaman A.S., Abad C., Troy T.J., Huh W.T., Modi V., A stochastic model for a macroscale hybrid renewable energy system, Renewable and Sustainable Energy Reviews, 54, 688-703, 2016.
  • Kocaman A.S., Modi V., Value of Pumped-Hydro Storage in a Hybrid Energy Generation and Allocation System, Preprint, http://www.optimization-online.org/DB_HTML/2017/04/5979.html, 2017.
  • Díaz-González F., Sumper A., Gomis-Bellmunt O., Villafáfila-Robles R., A review of energy storage technologies for wind power applications, Renewable and Sustainable Energy Reviews. 16 (4), 2154-2171, 2012.
  • Pérez-Díaz J.I., Chazarra M., García-González J., Cavazzini G., Stoppato A., Trends and challenges in the operation of pumped-storage hydropower plants, Renewable and Sustainable Energy Reviews, 44, 767-784, 2015.
  • Deane J.P., Gallachóir B.Ó., McKeogh E.J., Techno-economic review of existing and new pumped hydro energy storage plant, Renewable and Sustainable Energy Reviews, 14 (4), 1293-1302, 2010.
  • Sertkaya A.A., Saraç M., Omar M.A., Pompaj depolamalı hidroelektrik santrallerin Türkiye için önemi, Gazi Mühendislik Bilimleri Dergisi, 1 (3), 2016.
  • Rehman S., Al-Hadhrami L.M., Alam M.M., Pumped hydro energy storage system: A technological review. Renewable and Sustainable Energy Reviews, 44, 586-598, 2015.
  • Kapsali M., Anagnostopoulos J.S., Kaldellis J.K., Wind powered pumped-hydro storage systems for remote islands: a complete sensitivity analysis based on economic perspectives, Applied energy, 99, 430-444, 2012.
  • Katsaprakakis D.A., Christakis D.G., Pavlopoylos K., Stamataki S., Dimitrelou I., Stefanakis I., Spanos P., Introduction of a wind powered pumped storage system in the isolated insular power system of Karpathos–Kasos, Applied Energy, 97, 38-48, 2012.
  • Brown P.D., Lopes J.P., Matos M.A., Optimization of pumped storage capacity in an isolated power system with large renewable penetration, IEEE Transactions on Power systems, 23(2), 523-531, 2008.
  • Ma T., Yang H., Lu L., Peng J., Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization, Applied energy, 137, 649-659, 2015.
  • http://www.eie.gov.tr/yenilenebilir/h_hidrolik_nedir.aspx. Erişim Tarihi: 24/2/2017.
  • Elektrik İşleri Etüt İdaresi Genel Müdürlüğü İlk Etüt Raporları, 2008.
  • Kocaman A.S., Abad C., Troy T.J., Huh W.T., Modi V., A stochastic model for a macroscale hybrid renewable energy system, Renewable and Sustainable Energy Reviews, 54, 688-703, 2016.
  • H. Energy, “Hybrid renewable and distributed generation system design software.” http://www.homerenergy.com/. Erişim Tarihi:Temmuz 2016.
  • http://www.epdk.org.tr/TR/Dokumanlar/Elektrik/DagitimSirketleriProfiller. Erişim Tarihi: Temmuz 2016.
  • http://www-01.ibm.com/software/info/ilog/. Erişim Tarihi: Mart 2014.
  • Lempérière F., Dam design and construction, reservoirs and balancing lakes. http://www.hydrocoop.org. Yayın tarihi Temmuz 2012. Erişim Tarihi: Mart 2014.
  • Keller A. A., Sakthivadivel R., Seckler D. W.,Water scarcity and the role of storage in development, 39, 2000.
  • OpenEI Transparent Cost Database. Erişim Tarihi: Mart 2014.
  • World Energy Perspective, Cost of Energy Technologies, World Energy, 2013.
  • http://www.windustry.org/how_much_do_wind_turbines_cost. Erişim Tarihi: Mart 2014.
  • Khan, M. J., Iqbal, M. T., Pre-feasibility study of stand-alone hybrid energy systems for applications in Newfoundland, Renewable energy, 30 (6), 835-854, 2005.
  • http://www.epdk.org.tr/TR/Dokumanlar/Elektrik/DagitimSirketleriProfiller. Erişim Tarihi: Haziran 2016.
  • http://www-01.ibm.com/software/info/ilog/. Erişim Tarihi: Mart 2014.
  • http://www.enerjiatlasi.com/hidroelektrik/oymapinar-baraji.html. Erişim Tarihi: Kasım 2016.
  • Kumar A., T. Schei, A. Ahenkorah, R. Caceres Rodriguez, J.-M. Devernay, M. Freitas, D. Hall, Å. Killingtveit, Z. Liu, 2011: Hydropower. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Elektrik İşleri Etüt İdaresi Genel Müdürlüğü İlk Etüt Raporları, 2008.
  • http://www.enerjiatlasi.com/hidroelektrik/oymapinar-baraji.html. Erişim Tarihi: 24/2/2017.
  • http://www.enerjiatlasi.com/hidroelektrik/manavgat-baraji.html. Erişim Tarihi: 24/2/2017.
  • http://www.imo.org.tr/resimler/ekutuphane/pdf/17634_33_28.pdf . Erişim Tarihi: 24/2/2017.
  • http://insaat.balikesir.edu.tr/dokumanlar/suyapilari/barajlar.pdf . Erişim Tarihi: 24/2/2017.
There are 46 citations in total.

Details

Journal Section Makaleler
Authors

Ayşe Selin Kocaman 0000-0001-8345-5999

Publication Date March 26, 2019
Submission Date April 28, 2017
Published in Issue Year 2019 Volume: 34 Issue: 1

Cite

APA Kocaman, A. S. (2019). Pompaj depolamalı hibrid enerji sistemi optimizasyonu -Türkiye için vaka analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(1), 53-68. https://doi.org/10.17341/gazimmfd.416461
AMA Kocaman AS. Pompaj depolamalı hibrid enerji sistemi optimizasyonu -Türkiye için vaka analizi. GUMMFD. March 2019;34(1):53-68. doi:10.17341/gazimmfd.416461
Chicago Kocaman, Ayşe Selin. “Pompaj Depolamalı Hibrid Enerji Sistemi Optimizasyonu -Türkiye için Vaka Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, no. 1 (March 2019): 53-68. https://doi.org/10.17341/gazimmfd.416461.
EndNote Kocaman AS (March 1, 2019) Pompaj depolamalı hibrid enerji sistemi optimizasyonu -Türkiye için vaka analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34 1 53–68.
IEEE A. S. Kocaman, “Pompaj depolamalı hibrid enerji sistemi optimizasyonu -Türkiye için vaka analizi”, GUMMFD, vol. 34, no. 1, pp. 53–68, 2019, doi: 10.17341/gazimmfd.416461.
ISNAD Kocaman, Ayşe Selin. “Pompaj Depolamalı Hibrid Enerji Sistemi Optimizasyonu -Türkiye için Vaka Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/1 (March 2019), 53-68. https://doi.org/10.17341/gazimmfd.416461.
JAMA Kocaman AS. Pompaj depolamalı hibrid enerji sistemi optimizasyonu -Türkiye için vaka analizi. GUMMFD. 2019;34:53–68.
MLA Kocaman, Ayşe Selin. “Pompaj Depolamalı Hibrid Enerji Sistemi Optimizasyonu -Türkiye için Vaka Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 34, no. 1, 2019, pp. 53-68, doi:10.17341/gazimmfd.416461.
Vancouver Kocaman AS. Pompaj depolamalı hibrid enerji sistemi optimizasyonu -Türkiye için vaka analizi. GUMMFD. 2019;34(1):53-68.