Research Article
BibTex RIS Cite

Yapay kalp destek ünitesinin kan viskozitesi ölçümünü gerçekleştiren titreşimli bir viskozimetre olarak geliştirilmesi

Year 2019, Volume: 34 Issue: 1, 235 - 246, 26.03.2019
https://doi.org/10.17341/gazimmfd.416484

Abstract

Bir hastada yapay kalp destek üniteleri kullanıldığında, kırmızı kan hücreleri zaman içerisinde ünitelerin iç yapılarına tutunmakta ve tromboz oluşmasına neden olmaktadır. Böylelikle birkaç yıl içerisinde yapay kalp destek üniteleri ciddi hasarlar almakta ve kullanılması imkansız hale gelmektedir. Bu çalışmanın amacı yapay kalp destek ünitesinde bulunan kanın viskozitesini tespit etmek ve uzmanlara kalp ünitesinin durumu hakkında bilgi temin etmektir. Trombo z kalp destek ünitesinde birikmeye başladığı zaman kalp destek ünitesi üzerinden akan kanın viskozitesi de artmaktadır. Böylelikle kalp destek ünitesinde oluşan tromboz hakkında fikir elde edilmesi amaçlanmıştır. Bunu gerçekleştirebilmek adına kalp pompası içerisindeki rotor sadece kendi ekseni etrafında döndürülmemiş, bunun yanında belirlenmiş bir frekansta da osilasyona maruz bırakılmıştır. Çalışma esnasında anlaşılmıştır ki kalp destek ünitesi içindeki viskozite arttıkça, rotoru aynı frekansta osilasyona tabi tutmakta zorlaşmaktadır. Viskozite arttıkça belirlenmiş olan bu frekansta faz kaymaları oluşmaktadır. Nihayetinde kanın viskozitesi ile kalp destek ünitesinin rotorunda oluşan faz kayması arasında doğrusal bir ilişkinin olduğu anlaşılmıştır.

References

  • Benjamin Emelia J., et al. "Heart disease and stroke statistics-2017 update: a report from the American Heart Association." Circulation 135.10 (2017): e146-e603.
  • Stevenson Lynne Warner, et al. "Decreasing survival benefit from cardiac transplantation for outpatients as the waiting list lengthens." Journal of the American College of Cardiology 18.4 (1991): 919-925.
  • Almond Christopher SD, et al. "Waiting list mortality among children listed for heart transplantation in the United States." Circulation 119.5 (2009): 717-727.
  • Li Yi-Chen, et al. "4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials." Biofabrication 9.1 (2016): 012001.
  • Liu Wanjun et al. “Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks”, Adv. Healthcare Mater. 2017, doi: 10.1002/adhm.201601451
  • Rose Eric A., et al. "Long-term use of a left ventricular assist device for end-stage heart failure." New England Journal of Medicine 345.20 (2001): 1435-1443.
  • Litwak Robert S., et al. "Use of a left heart assist device after intracardiac surgery: technique and clinical experience." The Annals of thoracic surgery 21.3 (1976): 191-202.
  • Starling Randall C., et al. "Unexpected abrupt increase in left ventricular assist device thrombosis." New England Journal of Medicine 370.1 (2014): 33-40.
  • Boyle Andrew J., et al. "Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation." The Journal of heart and lung transplantation 28.9 (2009): 881-887.
  • Fraser Katharine H., et al. "Computational fluid dynamics analysis of thrombosis potential in left ventricular assist device drainage cannulae." ASAIO journal (American Society for Artificial Internal Organs: 1992) 56.3 (2010): 157.
  • Windberger U., et al. "Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data." Experimental physiology 88.3 (2003): 431-440.
  • Danesh J., et al. "Haematocrit, viscosity, erythrocyte sedimentation rate: meta-analyses of prospective studies of coronary heart disease." European Heart Journal 21.7 (2000): 515-520.
  • Lowe G. D. O. "Blood rheology in arterial disease." Clinical Science 71.2 (1986): 137-146.
  • Chien Shu, et al. "Blood viscosity: influence of erythrocyte deformation." Science 157.3790 (1967): 827-829.
  • Hardeman M. R., P. Goedhart, and I. Y. Koen. "The effect of low-osmolar ionic and nonionic contrast media on human blood viscosity, erythrocyte morphology, and aggregation behavior." Investigative radiology 26.9 (1991): 810-818.
  • Loree Howard M., et al. "The Heartmate III: design and in vivo studies of a maglev centrifugal left ventricular assist device." Artificial organs 25.5 (2001): 386-391.
  • Farrar David J., et al. "Design features, developmental status, and experimental results with the Heartmate III centrifugal left ventricular assist system with a magnetically levitated rotor." ASAIO journal 53.3 (2007): 310-315.
  • Fåhræus Robin, and Torsten Lindqvist. "The viscosity of the blood in narrow capillary tubes." American Journal of Physiology--Legacy Content 96.3 (1931): 562-568.
  • Chien Shu, et al. "Blood viscosity: influence of erythrocyte aggregation." Science 157.3790 (1967): 829-831.
  • Song Xinwei, et al. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artificial organs, 2003, 27.10: 938-941.
  • Fraser Katharine H., et al. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. Journal of biomechanical engineering, 2012, 134.8: 081002.
  • Wu Jingchun, et al. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device. Artificial organs, 2010, 34.5: 402-411.
  • Bertram CD. Measurement for implantable rotary blood pumps. Physiol Meas 2005;26:99–117.
  • Granegger M, Moscato M, Casas F, Wieselthaler G, Schima H. Development of a pump flow estimator for rotary blood pumps to enhance monitoring of ventricular function. Artif Organs 2012;36:691–9.
  • Akpek Ali. "Effect of non-uniform temperature field in viscosity measurement." Journal of Visualization 19.2 (2016): 291-299.
  • Akpek Ali, et al. "Effect of thermal convection on viscosity measurement in vibrational viscometer." Journal of Flow Control, Measurement & Visualization 2014 (2014).
  • Akpek Ali, Youn Chongho, and Toshiharu Kagawa. "A study on vibrational viscometers considering temperature distribution effect." 日本フルードパワーシステム学会論文集 45.3 (2014): 29-36.
  • Öztarhan Ahmet, et al. Modifying medical textiles with antibacterial and friction resistance abilities by an alternative nanotextile technology called ion implantation technique. In: Biomedical Engineering Meeting (BIYOMUT), 2010 15th National. IEEE, 2010. p. 1-4.
  • Nikolaev A. G., et al. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation. Applied Surface Science, 2014, 310: 51-55.
  • Akpek Ali; Youn Chongho; Kagawa Toshiharu. Temperature measurement control problem of vibrational viscometers considering heat generation and heat transfer effect of oscillators. In: Control Conference (ASCC), 2013 9th Asian. IEEE, 2013. p. 1-6.
  • Sarı Sercan; Akpek Ali. Ortam Sicakliğinin Ultrasonik Nebülizatörler Üzerindeki Etkinliğini Ölçen Sistem Tasarimi. In: Electrical, Electronics and Biomedical Engineering (ELECO), 2016 National Conference on. IEEE, 2016. p. 521-525.
  • Uçar Tuba; Koçak Onur; Akpek Ali. New concept design of an insulin pen for visually impaired or blind diabetius mellitus patients. In: Medical Technologies National Congress (TIPTEKNO), 2016. IEEE, 2016. p. 1-4.
  • Altınsu Betül; Koçak, Onur; Akpek, Ali. Design and analysis of an autoclave simulation using MATLAB/Simulink. In: Medical Technologies National Congress (TIPTEKNO), 2016. IEEE, 2016. p. 1-4.
  • Koçak Onur, et al. A medical waste management model for public private partnership hospitals. In: Medical Technologies National Congress (TIPTEKNO), 2016. IEEE, 2016. p. 1-4.
  • Çiftçioğlu Ç.; Koçak, O.; Akpek, A. Remote control of centrifuge and injection systems via MATLAB and ARDUINO. In: Medical Technologies National Conference. 2015.
  • Cebeci Semih Ahmet, et al. Electronic Pillbox Design for Demantia Patients. In: Medical Technologies National Conference (TIPTEKNO), 2015. IEEE, 2015. p. 1-3.
  • Avcı Hüseyin, et al. Recent advances in organ-on-a-chip technologies and future challenges: A Review. Turkish Journal of Chemistry. 2017. DOI: 10.3906/kim-1611-35
  • KOÇAK, Onur, et al. Control Of Wheel Chair For Quadriplegia Patients: Design A Bioremotecontrol. 2015. ELECO 2015 9th International Conference On Electircal and Electronics Engineering
  • Ali Akpek, 2017, “Effect of Ambient Temperature Variations on Particle Dimesions in Ultrasonic Nebulizers during Cold Vaporization”, Adv. Sci. Technol. Eng. Syst. J. 2(3), 946-950
  • Y.C. Li, Y.S .Zhang, A. Akpek, S.R. Shin, A. Khademhosseini, 2016, “4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials”, Biofabrication 9 (2017) 012001
  • Ali Akpek, Y.S. Zhang, A. Khademhosseini, 2016, “Three Dimensional (3D) Bioprinting of Stereolithography Applied Tissue Engineered Artifical Heart Valves”, The Proceedings of XX. National Biomedical Engineering Congress”, pp: 45 - 49
Year 2019, Volume: 34 Issue: 1, 235 - 246, 26.03.2019
https://doi.org/10.17341/gazimmfd.416484

Abstract

References

  • Benjamin Emelia J., et al. "Heart disease and stroke statistics-2017 update: a report from the American Heart Association." Circulation 135.10 (2017): e146-e603.
  • Stevenson Lynne Warner, et al. "Decreasing survival benefit from cardiac transplantation for outpatients as the waiting list lengthens." Journal of the American College of Cardiology 18.4 (1991): 919-925.
  • Almond Christopher SD, et al. "Waiting list mortality among children listed for heart transplantation in the United States." Circulation 119.5 (2009): 717-727.
  • Li Yi-Chen, et al. "4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials." Biofabrication 9.1 (2016): 012001.
  • Liu Wanjun et al. “Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks”, Adv. Healthcare Mater. 2017, doi: 10.1002/adhm.201601451
  • Rose Eric A., et al. "Long-term use of a left ventricular assist device for end-stage heart failure." New England Journal of Medicine 345.20 (2001): 1435-1443.
  • Litwak Robert S., et al. "Use of a left heart assist device after intracardiac surgery: technique and clinical experience." The Annals of thoracic surgery 21.3 (1976): 191-202.
  • Starling Randall C., et al. "Unexpected abrupt increase in left ventricular assist device thrombosis." New England Journal of Medicine 370.1 (2014): 33-40.
  • Boyle Andrew J., et al. "Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation." The Journal of heart and lung transplantation 28.9 (2009): 881-887.
  • Fraser Katharine H., et al. "Computational fluid dynamics analysis of thrombosis potential in left ventricular assist device drainage cannulae." ASAIO journal (American Society for Artificial Internal Organs: 1992) 56.3 (2010): 157.
  • Windberger U., et al. "Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data." Experimental physiology 88.3 (2003): 431-440.
  • Danesh J., et al. "Haematocrit, viscosity, erythrocyte sedimentation rate: meta-analyses of prospective studies of coronary heart disease." European Heart Journal 21.7 (2000): 515-520.
  • Lowe G. D. O. "Blood rheology in arterial disease." Clinical Science 71.2 (1986): 137-146.
  • Chien Shu, et al. "Blood viscosity: influence of erythrocyte deformation." Science 157.3790 (1967): 827-829.
  • Hardeman M. R., P. Goedhart, and I. Y. Koen. "The effect of low-osmolar ionic and nonionic contrast media on human blood viscosity, erythrocyte morphology, and aggregation behavior." Investigative radiology 26.9 (1991): 810-818.
  • Loree Howard M., et al. "The Heartmate III: design and in vivo studies of a maglev centrifugal left ventricular assist device." Artificial organs 25.5 (2001): 386-391.
  • Farrar David J., et al. "Design features, developmental status, and experimental results with the Heartmate III centrifugal left ventricular assist system with a magnetically levitated rotor." ASAIO journal 53.3 (2007): 310-315.
  • Fåhræus Robin, and Torsten Lindqvist. "The viscosity of the blood in narrow capillary tubes." American Journal of Physiology--Legacy Content 96.3 (1931): 562-568.
  • Chien Shu, et al. "Blood viscosity: influence of erythrocyte aggregation." Science 157.3790 (1967): 829-831.
  • Song Xinwei, et al. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artificial organs, 2003, 27.10: 938-941.
  • Fraser Katharine H., et al. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. Journal of biomechanical engineering, 2012, 134.8: 081002.
  • Wu Jingchun, et al. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device. Artificial organs, 2010, 34.5: 402-411.
  • Bertram CD. Measurement for implantable rotary blood pumps. Physiol Meas 2005;26:99–117.
  • Granegger M, Moscato M, Casas F, Wieselthaler G, Schima H. Development of a pump flow estimator for rotary blood pumps to enhance monitoring of ventricular function. Artif Organs 2012;36:691–9.
  • Akpek Ali. "Effect of non-uniform temperature field in viscosity measurement." Journal of Visualization 19.2 (2016): 291-299.
  • Akpek Ali, et al. "Effect of thermal convection on viscosity measurement in vibrational viscometer." Journal of Flow Control, Measurement & Visualization 2014 (2014).
  • Akpek Ali, Youn Chongho, and Toshiharu Kagawa. "A study on vibrational viscometers considering temperature distribution effect." 日本フルードパワーシステム学会論文集 45.3 (2014): 29-36.
  • Öztarhan Ahmet, et al. Modifying medical textiles with antibacterial and friction resistance abilities by an alternative nanotextile technology called ion implantation technique. In: Biomedical Engineering Meeting (BIYOMUT), 2010 15th National. IEEE, 2010. p. 1-4.
  • Nikolaev A. G., et al. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation. Applied Surface Science, 2014, 310: 51-55.
  • Akpek Ali; Youn Chongho; Kagawa Toshiharu. Temperature measurement control problem of vibrational viscometers considering heat generation and heat transfer effect of oscillators. In: Control Conference (ASCC), 2013 9th Asian. IEEE, 2013. p. 1-6.
  • Sarı Sercan; Akpek Ali. Ortam Sicakliğinin Ultrasonik Nebülizatörler Üzerindeki Etkinliğini Ölçen Sistem Tasarimi. In: Electrical, Electronics and Biomedical Engineering (ELECO), 2016 National Conference on. IEEE, 2016. p. 521-525.
  • Uçar Tuba; Koçak Onur; Akpek Ali. New concept design of an insulin pen for visually impaired or blind diabetius mellitus patients. In: Medical Technologies National Congress (TIPTEKNO), 2016. IEEE, 2016. p. 1-4.
  • Altınsu Betül; Koçak, Onur; Akpek, Ali. Design and analysis of an autoclave simulation using MATLAB/Simulink. In: Medical Technologies National Congress (TIPTEKNO), 2016. IEEE, 2016. p. 1-4.
  • Koçak Onur, et al. A medical waste management model for public private partnership hospitals. In: Medical Technologies National Congress (TIPTEKNO), 2016. IEEE, 2016. p. 1-4.
  • Çiftçioğlu Ç.; Koçak, O.; Akpek, A. Remote control of centrifuge and injection systems via MATLAB and ARDUINO. In: Medical Technologies National Conference. 2015.
  • Cebeci Semih Ahmet, et al. Electronic Pillbox Design for Demantia Patients. In: Medical Technologies National Conference (TIPTEKNO), 2015. IEEE, 2015. p. 1-3.
  • Avcı Hüseyin, et al. Recent advances in organ-on-a-chip technologies and future challenges: A Review. Turkish Journal of Chemistry. 2017. DOI: 10.3906/kim-1611-35
  • KOÇAK, Onur, et al. Control Of Wheel Chair For Quadriplegia Patients: Design A Bioremotecontrol. 2015. ELECO 2015 9th International Conference On Electircal and Electronics Engineering
  • Ali Akpek, 2017, “Effect of Ambient Temperature Variations on Particle Dimesions in Ultrasonic Nebulizers during Cold Vaporization”, Adv. Sci. Technol. Eng. Syst. J. 2(3), 946-950
  • Y.C. Li, Y.S .Zhang, A. Akpek, S.R. Shin, A. Khademhosseini, 2016, “4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials”, Biofabrication 9 (2017) 012001
  • Ali Akpek, Y.S. Zhang, A. Khademhosseini, 2016, “Three Dimensional (3D) Bioprinting of Stereolithography Applied Tissue Engineered Artifical Heart Valves”, The Proceedings of XX. National Biomedical Engineering Congress”, pp: 45 - 49
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Ali Akpek 0000-0003-2803-6585

Publication Date March 26, 2019
Submission Date May 31, 2017
Acceptance Date September 11, 17
Published in Issue Year 2019 Volume: 34 Issue: 1

Cite

APA Akpek, A. (2019). Yapay kalp destek ünitesinin kan viskozitesi ölçümünü gerçekleştiren titreşimli bir viskozimetre olarak geliştirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(1), 235-246. https://doi.org/10.17341/gazimmfd.416484
AMA Akpek A. Yapay kalp destek ünitesinin kan viskozitesi ölçümünü gerçekleştiren titreşimli bir viskozimetre olarak geliştirilmesi. GUMMFD. March 2019;34(1):235-246. doi:10.17341/gazimmfd.416484
Chicago Akpek, Ali. “Yapay Kalp Destek ünitesinin Kan Viskozitesi ölçümünü gerçekleştiren titreşimli Bir Viskozimetre Olarak geliştirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, no. 1 (March 2019): 235-46. https://doi.org/10.17341/gazimmfd.416484.
EndNote Akpek A (March 1, 2019) Yapay kalp destek ünitesinin kan viskozitesi ölçümünü gerçekleştiren titreşimli bir viskozimetre olarak geliştirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34 1 235–246.
IEEE A. Akpek, “Yapay kalp destek ünitesinin kan viskozitesi ölçümünü gerçekleştiren titreşimli bir viskozimetre olarak geliştirilmesi”, GUMMFD, vol. 34, no. 1, pp. 235–246, 2019, doi: 10.17341/gazimmfd.416484.
ISNAD Akpek, Ali. “Yapay Kalp Destek ünitesinin Kan Viskozitesi ölçümünü gerçekleştiren titreşimli Bir Viskozimetre Olarak geliştirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/1 (March 2019), 235-246. https://doi.org/10.17341/gazimmfd.416484.
JAMA Akpek A. Yapay kalp destek ünitesinin kan viskozitesi ölçümünü gerçekleştiren titreşimli bir viskozimetre olarak geliştirilmesi. GUMMFD. 2019;34:235–246.
MLA Akpek, Ali. “Yapay Kalp Destek ünitesinin Kan Viskozitesi ölçümünü gerçekleştiren titreşimli Bir Viskozimetre Olarak geliştirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 34, no. 1, 2019, pp. 235-46, doi:10.17341/gazimmfd.416484.
Vancouver Akpek A. Yapay kalp destek ünitesinin kan viskozitesi ölçümünü gerçekleştiren titreşimli bir viskozimetre olarak geliştirilmesi. GUMMFD. 2019;34(1):235-46.