Research Article
BibTex RIS Cite

Çimento esaslı lifli kompozitlerin dijital görüntü korelasyonu yöntemi ile çoklu çatlak davranışının incelenmesi

Year 2019, Volume: 34 Issue: 1, 479 - 494, 26.03.2019
https://doi.org/10.17341/gazimmfd.416508

Abstract

Dijital görüntü korelasyonu (DIC), matematik tabanlı temassız bir deformasyon ölçüm tekniğidir. Klasik deformasyon ölçüm yöntemlerine kıyasla sağladığı avantajlar (alansal deformasyon ölçümü, temassız ölçüm, deney sonrası analize imkân tanıması vb.) sayesinde DIC’nin mühendislik alanında kullanımı giderek artmaktadır. Mühendislik özellikleri geliştirilmiş çimentolu kompozitler (ECC) geleneksel lifli kompozitlerden farklı olarak kararlı çoklu çatlama davranışı göstermektedir. ECC’nin gösterdiği bu kararlı çoklu çatlama davranışının analizi, kompozitin mekanik ve durabilite performansının değerlendirilmesi açısından oldukça önemlidir. ECC üzerinde yapılan çalışmalar her geçen gün artmaktadır. Bu çalışmada, DIC’nin mühendislik malzemelerinin deformasyon ölçümlerindeki mevcut kullanım alanları detaylı bir literatür araştırması şeklinde sunulmuştur. Son yıllarda ECC’nin çoklu çatlak davranışının analizi ile ilgili yapılan çalışmalar taranmış, ayrıca DIC yönteminin bu amaçla kullanılabilirliği deneysel olarak incelenmiştir. Bu kapsamda hacimce %2 oranında yüksek çekme dayanımlı polipropilen lif (HTPP) kullanılarak kemik şeklinde çekme numunesi formundaki HTPP-ECC’ler üretilmiştir. Üretilen kompozitlere tek eksenli çekme deneyleri uygulanmış ve kompozit deformasyonları çekme örneği etrafına yerleştirilen 4 adet geleneksel deformasyon ölçer (LVDT) ve DIC tabanlı bir kamera sistemiyle kaydedilmiştir. LVDT ve DIC yöntemleri ile elde edilen bulgular kıyaslanarak, DIC tekniğinin kompozitlerin çoklu çatlama davranışının incelenmesinde kullanılabilirliği araştırılmıştır. Elde edilen bulgular değerlendirildiğinde, DIC’nin çoklu çatlak davranışı gösteren kompozitlerde deformasyon takibi açısından oldukça yakın sonuçlar verdiği tespit edilmiştir. Ayrıca, çatlak analizi için DIC metodunun geleneksel yöntemlerden üstün yanları ortaya koyulmuştur.

References

  • Mehdikhani, M., Aravand, M., Sabuncuoglu, B., Callens, M. G., Lomov, S. V., & Gorbatikh, L., Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation, Composite Structures, 140, 192-201, 2016.
  • Ramos T., Furtado A., Eslami S., Alves S., Rodrigues H., Arêde A., Tavares P.J., Moreira P. M. G. P., 2D and 3D Digital Image Correlation in Civil Engineering - Measurements in a Masonry Wall, Procedia Engineering, 114, 215 – 222, 2015.
  • Hamrat, M., Boulekbache, B., Chemrouk, M., & Amziane, S., Flexural cracking behavior of normal strength, high strength and high strength fiber concrete beams, using digital image correlation technique, Construction and Building Materials, 106, 678-692, 2016.
  • Yamaguchi, I., A laser-speckle strain gauge. Journal of Physics E: Scientific Instruments, 14(11), 1270-1273, 1981.
  • Peters, W. H., & Ranson, W. F., Digital imaging techniques in experimental stress analysis, Optical Engineering, 21(3), 213427-213427, 1982.
  • Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R., Determination of displacements using an improved digital correlation method, Image and Vision Computing, 1(3), 133-139, 1983.
  • Hild, F., Raka, B., Baudequin, M., Roux, S., & Cantelaube, F., Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation, Applied Optics, 41(32), 6815-6828, 2002.
  • Hild, F., & Roux, S., Digital image correlation: from displacement measurement to identification of elastic properties–a review, Strain, 42(2), 69-80, 2006.
  • Shih, M. H., & Sung, W. P., Application of digital image correlation method for analysing crack variation of reinforced concrete beams, Sadhana,38(4), 723-741, 2013.
  • Mahal, M., Blanksvärd, T., Täljsten, B., & Sas, G., Using digital image correlation to evaluate fatigue behavior of strengthened reinforced concrete beams, Engineering Structures, 105, 277-288, 2015.
  • Roux, S., & Hild, F., Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks, Journal of Physics D: Applied Physics, 42(21), 214004, 2009.
  • Besnard, G., Guérard, S., Roux, S., & Hild, F., A space–time approach in digital image correlation: Movie-DIC, Optics and Lasers in Engineering,49(1), 71-81, 2011.
  • Vanlanduit, S., Vanherzeele, J., Longo, R., & Guillaume, P., A digital image correlation method for fatigue test experiments, Optics and Lasers in Engineering, 47(3), 371-378, 2009.
  • Ohno, M., & Li, V. C., A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites, Construction and Building Materials, 57, 163-168, 2014.
  • Wang, Y., & Cuitiño, A. M., Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation.International Journal of Solids and Structures, 39(13), 3777-3796, 2002.
  • Mguil-Touchal, S., Morestin, F., Brunei M., “Various Experimental Applications of Digital Image Correlation Method”, Transactions on Modelling and Simulation Vol.16 (Computer Methods and Experimental Measurements), WIT Press, 45-58, 1997.
  • Aparna, M. L., Chaitanya, G., Srinivas, K., & Rao, J. A., Fatigue Testing of Continuous GFRP Composites Using Digital Image Correlation (DIC) Technique a Review, Materials Today: Proceedings, 2(4), 3125-3131, 2015.
  • Liang, Z., Yin, B., Liu, H., Mo, J., & Wang, S., Displacement measurement of specimen surfaces with damaged areas by digital image correlation., Measurement, 76, 183-188, 2015.
  • Turner, D. Z., Peridynamics-Based Digital Image Correlation Algorithm Suitable for Cracks and Other Discontinuities, Journal of Engineering Mechanics, 141(2), 04014115, 2014.
  • Liu, X. Y., Li, R. L., Zhao, H. W., Cheng, T. H., Cui, G. J., Tan, Q. C., & Meng, G. W., Quality assessment of speckle patterns for digital image correlation by Shannon entropy, Optik-International Journal for Light and Electron Optics, 126(23), 4206-4211, 2015.
  • Gu, G., A comparative study of random speckle pattern simulation models in digital image correlation, Optik-International Journal for Light and Electron Optics, 126(23), 3713-3716, 2015.
  • Pan, B., Xie, H., Wang, Z., Qian, K., & Wang, Z., Study on subset size selection in digital image correlation for speckle patterns, Optics Express,16(10), 7037-7048, 2008.
  • Pierré, J. E., Passieux, J. C., Périé, J. N., Bugarin, F., & Robert, L., Unstructured finite element-based digital image correlation with enhanced management of quadrature and lens distortions,, Optics and Lasers in
  • Engineering, 77, 44-53, 2016.
  • Mudassar, A. A., & Butt, S, Improved Digital Image Correlation method, Optics and Lasers in Engineering, 87, 156-167, 2015.
  • Su, Y., Zhang, Q., Xu, X., & Gao, Z., Quality assessment of speckle patterns for DIC by consideration of both systematic errors and random errors.Optics and Lasers in Engineering, 86, 132-142, 2016.
  • Gonzáles, G. L. G., Rodrigues, L. D., Meggiolaro, M. A., & Freire, J. L. F., Strains in Shallow and Deep Notches Using Two DIC Algorithms, In Advancement of Optical Methods in Experimental Mechanics, 3, 281-294, 2016.
  • Sutton, M. A., Orteu, J. J., & Schreier, H., Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications, Springer Science & Business Media, 2009.
  • Xu, Hui, "Application of Visual Imaging Correlation-2D to Strain Measurement", Thesis, Rochester Institute of Technology, 2014. http://scholarworks.rit.edu/theses/8566. Erişim tarihi Eylül 15, 2016.
  • Digital Image Correlation: Overview of principles and Software, University of South Carolina, SEM2009 workshop.
  • VIC-2D Testing Guide. Reference Manuel. http://correlatedsolutions.com/. Erişim tarihi Haziran 15, 2016.
  • He, T., Liu, L., Makeev, A., & Shonkwiler, B., Characterization of stress–strain behavior of composites using digital image correlation and finite element analysis, Composite Structures, 140, 84-93, 2016.
  • Park, J., Yoon, S., Kwon, T. H., & Park, K., Assessment of speckle-pattern quality in digital image correlation based on gray intensity and speckle morphology, Optics and Lasers in Engineering, 91, 62-72, 2017.
  • Lecompte, D., Smits, A., Bossuyt, S., Sol, H., Vantomme, J., Van Hemelrijck, D., & Habraken, A. M., Quality assessment of speckle patterns for digital image correlation, Optics and Lasers in Engineering, 44(11), 1132-1145, 2006.
  • Hassan, G. M., MacNish, C., Dyskin, A., & Shufrin, I., Digital Image Correlation with Dynamic Subset Selection, Optics and Lasers in Engineering,84, 1-9, 2016.
  • Magnan, P., Detection of visible photons in CCD and CMOS: A comparative view, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 504(1), 199-212, 2003.
  • Zurich, N. B., CCD versus CMOS--has CCD imaging come to an end?, 140, 131-137, 2001. www.ifp.uni stuttgart.de/publications/phowo01/blanc.pdf. Erişim tarihi Eylül 20, 2016.
  • Litwiller, D., CCD vs. CMOS, Photonics Spectra, 35(1), 154-158, 2001.
  • Fossum, E. R., CMOS image sensors: electronic camera-on-a-chip, IEEE Transactions on Electron Devices, 44(10), 1689-1698, 1997.
  • Hain, R., Kähler, C. J., & Tropea, C., Comparison of CCD, CMOS and intensified cameras, Experiments in Fluids, 42(3), 403-411, 2007.
  • Krstulović-Opara, L., Surjak, M., Vesenjak, M., Tonković, Z., Kodvanj, J., & Domazet, Ž., Comparison of infrared and 3D digital image correlation techniques applied for mechanical testing of materials, Infrared Physics & Technology, 73, 166-174, 2015.
  • Gao, G., Yao, W., Xia, K., & Li, Z., Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method.Engineering Fracture Mechanics, 138, 146-155, 2015.
  • Khoo, S. W., Karuppanan, S., & Tan, C. S., A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation, Metrology and Measurement Systems, 23(3), 461-480, 2016.
  • Haddadi, H., & Belhabib, S., Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique, Optics and Lasers in Engineering, 46(2), 185-196, 2008.
  • Bomarito, G. F., Hochhalter, J. D., & Cannon, A. H., Image Correlation Pattern Optimization for Micro-Scale In-Situ Strain Measurements, 8.SEM International Congress , Orlando-FL-United States, 6-9 Haziran 2016.
  • Zhang, J., Jin, G., Ma, S., & Meng, L., Application of an improved subpixel registration algorithm on digital speckle correlation measurement, Optics & Laser Technology, 35(7), 533-542, 2003.
  • Cooreman, S., Lecompte, D., Sol, H., Vantomme, J., & Debruyne, D., Identification of mechanical material behavior through inverse modeling and DIC, Experimental Mechanics, 48(4), 421-433, 2008.
  • Reu, P., Stereo‐Rig Design: Creating the Stereo‐Rig Layout–Part 1, Experimental Techniques, 36(5), 3-4, 2012.
  • Ke, X. D., Schreier, H. W., Sutton, M. A., & Wang, Y. Q., Error assessment in stereo-based deformation measurements, Experimental Mechanics, 51(4), 423-441, 2011.
  • Sherir, M. A., Hossain, K. M. A., & Lachemi, M., MAT-731: Mechanical & durability properties of engineered cementitious composites with different aggregates, CSCE Annuel Conference, London-England,1-4 Haziran 2016.
  • Li, V. C., Can Concrete Be Bendable? The notoriously brittle building material may yet stretch instead of breaking, American Scientist, 100(6), 484-93, 2012.
  • Dhawale, A. W., & Joshi, V. P., Engineered cementitious composites for structural applications, International Journal of Application or Innovation in Engineering & Management, 2, 198-205, 2013.
  • Zhou, J., Qian, S., Beltran, M. G. S., Ye, G., van Breugel, K., & Li, V. C., Development of engineered cementitious composites with limestone powder and blast furnace slag, Materials and Structures, 43(6), 803-814, 2010.
  • Felekoglu, B., Tosun-Felekoglu, K., Ranade, R., Zhang, Q., & Li, V. C., Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC, Composites Part B: Engineering, 60, 359-370, 2014.
  • Li, V. C., & Maalej, M., Toughening in cement based composites. Part II: Fiber reinforced cementitious composites, Cement and Concrete Composites, 18(4), 239-249, 1996.
  • Li, V. C., From micromechanics to structural engineering: The design of cementitious composites for civil engineering applications, JSCE Journal of Structural Mechanics and Earthquake Engineering,10(2), 37–48, 1993.
  • Felekoğlu, B., & Keskinateş, M., Multiple cracking analysis of HTPP-ECC by digital image correlation method. Computers and Concrete, 17 (6), 831-848, 2016.
  • Yu, J., Lin, J., Zhang, Z., & Li, V. C., Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures. Construction and Building Materials, 99, 82-89, 2015.
Year 2019, Volume: 34 Issue: 1, 479 - 494, 26.03.2019
https://doi.org/10.17341/gazimmfd.416508

Abstract

References

  • Mehdikhani, M., Aravand, M., Sabuncuoglu, B., Callens, M. G., Lomov, S. V., & Gorbatikh, L., Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation, Composite Structures, 140, 192-201, 2016.
  • Ramos T., Furtado A., Eslami S., Alves S., Rodrigues H., Arêde A., Tavares P.J., Moreira P. M. G. P., 2D and 3D Digital Image Correlation in Civil Engineering - Measurements in a Masonry Wall, Procedia Engineering, 114, 215 – 222, 2015.
  • Hamrat, M., Boulekbache, B., Chemrouk, M., & Amziane, S., Flexural cracking behavior of normal strength, high strength and high strength fiber concrete beams, using digital image correlation technique, Construction and Building Materials, 106, 678-692, 2016.
  • Yamaguchi, I., A laser-speckle strain gauge. Journal of Physics E: Scientific Instruments, 14(11), 1270-1273, 1981.
  • Peters, W. H., & Ranson, W. F., Digital imaging techniques in experimental stress analysis, Optical Engineering, 21(3), 213427-213427, 1982.
  • Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R., Determination of displacements using an improved digital correlation method, Image and Vision Computing, 1(3), 133-139, 1983.
  • Hild, F., Raka, B., Baudequin, M., Roux, S., & Cantelaube, F., Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation, Applied Optics, 41(32), 6815-6828, 2002.
  • Hild, F., & Roux, S., Digital image correlation: from displacement measurement to identification of elastic properties–a review, Strain, 42(2), 69-80, 2006.
  • Shih, M. H., & Sung, W. P., Application of digital image correlation method for analysing crack variation of reinforced concrete beams, Sadhana,38(4), 723-741, 2013.
  • Mahal, M., Blanksvärd, T., Täljsten, B., & Sas, G., Using digital image correlation to evaluate fatigue behavior of strengthened reinforced concrete beams, Engineering Structures, 105, 277-288, 2015.
  • Roux, S., & Hild, F., Digital image correlation and fracture: an advanced technique for estimating stress intensity factors of 2D and 3D cracks, Journal of Physics D: Applied Physics, 42(21), 214004, 2009.
  • Besnard, G., Guérard, S., Roux, S., & Hild, F., A space–time approach in digital image correlation: Movie-DIC, Optics and Lasers in Engineering,49(1), 71-81, 2011.
  • Vanlanduit, S., Vanherzeele, J., Longo, R., & Guillaume, P., A digital image correlation method for fatigue test experiments, Optics and Lasers in Engineering, 47(3), 371-378, 2009.
  • Ohno, M., & Li, V. C., A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites, Construction and Building Materials, 57, 163-168, 2014.
  • Wang, Y., & Cuitiño, A. M., Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation.International Journal of Solids and Structures, 39(13), 3777-3796, 2002.
  • Mguil-Touchal, S., Morestin, F., Brunei M., “Various Experimental Applications of Digital Image Correlation Method”, Transactions on Modelling and Simulation Vol.16 (Computer Methods and Experimental Measurements), WIT Press, 45-58, 1997.
  • Aparna, M. L., Chaitanya, G., Srinivas, K., & Rao, J. A., Fatigue Testing of Continuous GFRP Composites Using Digital Image Correlation (DIC) Technique a Review, Materials Today: Proceedings, 2(4), 3125-3131, 2015.
  • Liang, Z., Yin, B., Liu, H., Mo, J., & Wang, S., Displacement measurement of specimen surfaces with damaged areas by digital image correlation., Measurement, 76, 183-188, 2015.
  • Turner, D. Z., Peridynamics-Based Digital Image Correlation Algorithm Suitable for Cracks and Other Discontinuities, Journal of Engineering Mechanics, 141(2), 04014115, 2014.
  • Liu, X. Y., Li, R. L., Zhao, H. W., Cheng, T. H., Cui, G. J., Tan, Q. C., & Meng, G. W., Quality assessment of speckle patterns for digital image correlation by Shannon entropy, Optik-International Journal for Light and Electron Optics, 126(23), 4206-4211, 2015.
  • Gu, G., A comparative study of random speckle pattern simulation models in digital image correlation, Optik-International Journal for Light and Electron Optics, 126(23), 3713-3716, 2015.
  • Pan, B., Xie, H., Wang, Z., Qian, K., & Wang, Z., Study on subset size selection in digital image correlation for speckle patterns, Optics Express,16(10), 7037-7048, 2008.
  • Pierré, J. E., Passieux, J. C., Périé, J. N., Bugarin, F., & Robert, L., Unstructured finite element-based digital image correlation with enhanced management of quadrature and lens distortions,, Optics and Lasers in
  • Engineering, 77, 44-53, 2016.
  • Mudassar, A. A., & Butt, S, Improved Digital Image Correlation method, Optics and Lasers in Engineering, 87, 156-167, 2015.
  • Su, Y., Zhang, Q., Xu, X., & Gao, Z., Quality assessment of speckle patterns for DIC by consideration of both systematic errors and random errors.Optics and Lasers in Engineering, 86, 132-142, 2016.
  • Gonzáles, G. L. G., Rodrigues, L. D., Meggiolaro, M. A., & Freire, J. L. F., Strains in Shallow and Deep Notches Using Two DIC Algorithms, In Advancement of Optical Methods in Experimental Mechanics, 3, 281-294, 2016.
  • Sutton, M. A., Orteu, J. J., & Schreier, H., Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications, Springer Science & Business Media, 2009.
  • Xu, Hui, "Application of Visual Imaging Correlation-2D to Strain Measurement", Thesis, Rochester Institute of Technology, 2014. http://scholarworks.rit.edu/theses/8566. Erişim tarihi Eylül 15, 2016.
  • Digital Image Correlation: Overview of principles and Software, University of South Carolina, SEM2009 workshop.
  • VIC-2D Testing Guide. Reference Manuel. http://correlatedsolutions.com/. Erişim tarihi Haziran 15, 2016.
  • He, T., Liu, L., Makeev, A., & Shonkwiler, B., Characterization of stress–strain behavior of composites using digital image correlation and finite element analysis, Composite Structures, 140, 84-93, 2016.
  • Park, J., Yoon, S., Kwon, T. H., & Park, K., Assessment of speckle-pattern quality in digital image correlation based on gray intensity and speckle morphology, Optics and Lasers in Engineering, 91, 62-72, 2017.
  • Lecompte, D., Smits, A., Bossuyt, S., Sol, H., Vantomme, J., Van Hemelrijck, D., & Habraken, A. M., Quality assessment of speckle patterns for digital image correlation, Optics and Lasers in Engineering, 44(11), 1132-1145, 2006.
  • Hassan, G. M., MacNish, C., Dyskin, A., & Shufrin, I., Digital Image Correlation with Dynamic Subset Selection, Optics and Lasers in Engineering,84, 1-9, 2016.
  • Magnan, P., Detection of visible photons in CCD and CMOS: A comparative view, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 504(1), 199-212, 2003.
  • Zurich, N. B., CCD versus CMOS--has CCD imaging come to an end?, 140, 131-137, 2001. www.ifp.uni stuttgart.de/publications/phowo01/blanc.pdf. Erişim tarihi Eylül 20, 2016.
  • Litwiller, D., CCD vs. CMOS, Photonics Spectra, 35(1), 154-158, 2001.
  • Fossum, E. R., CMOS image sensors: electronic camera-on-a-chip, IEEE Transactions on Electron Devices, 44(10), 1689-1698, 1997.
  • Hain, R., Kähler, C. J., & Tropea, C., Comparison of CCD, CMOS and intensified cameras, Experiments in Fluids, 42(3), 403-411, 2007.
  • Krstulović-Opara, L., Surjak, M., Vesenjak, M., Tonković, Z., Kodvanj, J., & Domazet, Ž., Comparison of infrared and 3D digital image correlation techniques applied for mechanical testing of materials, Infrared Physics & Technology, 73, 166-174, 2015.
  • Gao, G., Yao, W., Xia, K., & Li, Z., Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method.Engineering Fracture Mechanics, 138, 146-155, 2015.
  • Khoo, S. W., Karuppanan, S., & Tan, C. S., A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation, Metrology and Measurement Systems, 23(3), 461-480, 2016.
  • Haddadi, H., & Belhabib, S., Use of rigid-body motion for the investigation and estimation of the measurement errors related to digital image correlation technique, Optics and Lasers in Engineering, 46(2), 185-196, 2008.
  • Bomarito, G. F., Hochhalter, J. D., & Cannon, A. H., Image Correlation Pattern Optimization for Micro-Scale In-Situ Strain Measurements, 8.SEM International Congress , Orlando-FL-United States, 6-9 Haziran 2016.
  • Zhang, J., Jin, G., Ma, S., & Meng, L., Application of an improved subpixel registration algorithm on digital speckle correlation measurement, Optics & Laser Technology, 35(7), 533-542, 2003.
  • Cooreman, S., Lecompte, D., Sol, H., Vantomme, J., & Debruyne, D., Identification of mechanical material behavior through inverse modeling and DIC, Experimental Mechanics, 48(4), 421-433, 2008.
  • Reu, P., Stereo‐Rig Design: Creating the Stereo‐Rig Layout–Part 1, Experimental Techniques, 36(5), 3-4, 2012.
  • Ke, X. D., Schreier, H. W., Sutton, M. A., & Wang, Y. Q., Error assessment in stereo-based deformation measurements, Experimental Mechanics, 51(4), 423-441, 2011.
  • Sherir, M. A., Hossain, K. M. A., & Lachemi, M., MAT-731: Mechanical & durability properties of engineered cementitious composites with different aggregates, CSCE Annuel Conference, London-England,1-4 Haziran 2016.
  • Li, V. C., Can Concrete Be Bendable? The notoriously brittle building material may yet stretch instead of breaking, American Scientist, 100(6), 484-93, 2012.
  • Dhawale, A. W., & Joshi, V. P., Engineered cementitious composites for structural applications, International Journal of Application or Innovation in Engineering & Management, 2, 198-205, 2013.
  • Zhou, J., Qian, S., Beltran, M. G. S., Ye, G., van Breugel, K., & Li, V. C., Development of engineered cementitious composites with limestone powder and blast furnace slag, Materials and Structures, 43(6), 803-814, 2010.
  • Felekoglu, B., Tosun-Felekoglu, K., Ranade, R., Zhang, Q., & Li, V. C., Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC, Composites Part B: Engineering, 60, 359-370, 2014.
  • Li, V. C., & Maalej, M., Toughening in cement based composites. Part II: Fiber reinforced cementitious composites, Cement and Concrete Composites, 18(4), 239-249, 1996.
  • Li, V. C., From micromechanics to structural engineering: The design of cementitious composites for civil engineering applications, JSCE Journal of Structural Mechanics and Earthquake Engineering,10(2), 37–48, 1993.
  • Felekoğlu, B., & Keskinateş, M., Multiple cracking analysis of HTPP-ECC by digital image correlation method. Computers and Concrete, 17 (6), 831-848, 2016.
  • Yu, J., Lin, J., Zhang, Z., & Li, V. C., Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures. Construction and Building Materials, 99, 82-89, 2015.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Tarık Yıldırım

Kamile Tosun Felekoğlu

Eren Gödek

Muhammer Keskinateş This is me

Burak Felekoğlu

Okan Önal

Publication Date March 26, 2019
Submission Date July 20, 2017
Acceptance Date December 19, 17
Published in Issue Year 2019 Volume: 34 Issue: 1

Cite

APA Yıldırım, T., Tosun Felekoğlu, K., Gödek, E., Keskinateş, M., et al. (2019). Çimento esaslı lifli kompozitlerin dijital görüntü korelasyonu yöntemi ile çoklu çatlak davranışının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(1), 479-494. https://doi.org/10.17341/gazimmfd.416508
AMA Yıldırım T, Tosun Felekoğlu K, Gödek E, Keskinateş M, Felekoğlu B, Önal O. Çimento esaslı lifli kompozitlerin dijital görüntü korelasyonu yöntemi ile çoklu çatlak davranışının incelenmesi. GUMMFD. March 2019;34(1):479-494. doi:10.17341/gazimmfd.416508
Chicago Yıldırım, Tarık, Kamile Tosun Felekoğlu, Eren Gödek, Muhammer Keskinateş, Burak Felekoğlu, and Okan Önal. “Çimento Esaslı Lifli Kompozitlerin Dijital görüntü Korelasyonu yöntemi Ile çoklu çatlak davranışının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, no. 1 (March 2019): 479-94. https://doi.org/10.17341/gazimmfd.416508.
EndNote Yıldırım T, Tosun Felekoğlu K, Gödek E, Keskinateş M, Felekoğlu B, Önal O (March 1, 2019) Çimento esaslı lifli kompozitlerin dijital görüntü korelasyonu yöntemi ile çoklu çatlak davranışının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34 1 479–494.
IEEE T. Yıldırım, K. Tosun Felekoğlu, E. Gödek, M. Keskinateş, B. Felekoğlu, and O. Önal, “Çimento esaslı lifli kompozitlerin dijital görüntü korelasyonu yöntemi ile çoklu çatlak davranışının incelenmesi”, GUMMFD, vol. 34, no. 1, pp. 479–494, 2019, doi: 10.17341/gazimmfd.416508.
ISNAD Yıldırım, Tarık et al. “Çimento Esaslı Lifli Kompozitlerin Dijital görüntü Korelasyonu yöntemi Ile çoklu çatlak davranışının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/1 (March 2019), 479-494. https://doi.org/10.17341/gazimmfd.416508.
JAMA Yıldırım T, Tosun Felekoğlu K, Gödek E, Keskinateş M, Felekoğlu B, Önal O. Çimento esaslı lifli kompozitlerin dijital görüntü korelasyonu yöntemi ile çoklu çatlak davranışının incelenmesi. GUMMFD. 2019;34:479–494.
MLA Yıldırım, Tarık et al. “Çimento Esaslı Lifli Kompozitlerin Dijital görüntü Korelasyonu yöntemi Ile çoklu çatlak davranışının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 34, no. 1, 2019, pp. 479-94, doi:10.17341/gazimmfd.416508.
Vancouver Yıldırım T, Tosun Felekoğlu K, Gödek E, Keskinateş M, Felekoğlu B, Önal O. Çimento esaslı lifli kompozitlerin dijital görüntü korelasyonu yöntemi ile çoklu çatlak davranışının incelenmesi. GUMMFD. 2019;34(1):479-94.