Research Article
BibTex RIS Cite

Islak öğütme yöntemi ile metalik demir ve kobalttan hazırlanmış CoFe2O4 nanoyapılarda doyum manyetizasyonunun yapıya bağlı değişimi

Year 2019, Volume: 34 Issue: 2, 1101 - 1108, 23.05.2019
https://doi.org/10.17341/gazimmfd.460506

Abstract

Nano-kristal kobalt-ferrit örnekler ıslak mekanik öğütme/tavlama yöntemi ile metalik demir ve kobalt kullanılarak hazırlanmıştır. 750 C de tavlanan örnekler, 12 saate kadar kuru öğütme yapılarak, öğütme süresinin yapısal ve manyetik özelliklere etkisi irdelenmiştir. Örneklerin ortalama kristalit büyüklükleri x-ışını toz difraksiyon desenlerinden Rietveld analiz programı (MaudLab) yardımıyla hesaplanmıştır. Sonuçlar tavlanmış örnekte kristalite büyüklüğünün 60 nm olduğunu ve 12 saat kuru öğütmeyle birlikte 12 nm’ye kadar düştüğünü göstermektedir. Ancak örneklerin geçirmeli elektron mikroskobu (TEM) görüntülerinde birleşmeler olmuş nano-kristalitler gözlenmiştir. Rietveld analizleri ayrıca kuru öğütme sırasında oluşan kristal kusurları nedeniyle örneklerdeki mikro-gerilmenin 12 saat kuru öğütmeyle berber 2 x 10-4‘den 1.4 x 10-3’e çıktığı hesaplanmıştır. Co+2 iyonları için elektron bağlanma enerjileri x-ışını foto-elektron tayf-ölçümü (XPS) ile belirlenerek, inversiyon katsayıları belirlenmiş ve hacim başına düşen manyetik momentleri hesaplanmıştır. Hesaplanan hacim başına düşen manyetik momentleri öğütme ile birlikte 4.87 µB’dan 6.17 µB’a artarken, oda sıcaklığı titreşimli örnek manyetometresi (VSM) ölçümleri öğütme süresi arttıkça doyum manyetizasyonunun 125 emu g-1’dan 57 emu g-1’e düştüğünü göstermiştir.

References

  • Fujiwara T, Barium Ferrite Media for perpendicular Recording, IEEE T Magn, 21 (1985) 1480-1485
  • Pankhurst Q.A., Connolly J., Jones S. K., Dobson J., Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys. 36 (2003) R167–R181
  • Tirosh E, Shemer G, Markovich G 2006 Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe Chem. Matter. 18 465-70
  • Yen S. K., Padmanabhan P., Selvan S. T., Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery, Theranostics, 3 (2013) 986–1003
  • Tartaj P., Nanomagnets-from Fundamentals physics to biomedicine, Curr. Nanosci. 2 (2006) 43-53
  • Pankhurst Q A, Connoly J, Jones S K, Dobson J, Applications of magnetic nanoparticles in biomedicine J. Phys. D: Appl. Phys. 36 (2003) R167-81
  • Ramos A. V., Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers Appl. Phys. Lett. 91 (2007) 122107.
  • Giri A.K. , Photomagnetism and structure in cobalt ferrite nanoparticles, Appl. Phys. Lett. 80 (2002) 2341
  • Martens J.W.D., Peeters W.L., Van Noort H.M., Errnan M., Optical, magneto-optical and mössbauer spectroscopy on Co3+ substituted cobalt ferrite Co2+Fe2−xCo3+xO4(0 ⩽ x ⩽ 2), J. Phys. Chem. Solids 46 (1985) 411-416
  • Okuno S.N., Hashimoto S., Inomata K., Preferred crystal orientation of cobalt ferrite thin films induced by ion bombardment during deposition, J. Appl. Phys. 71 (1992) 5926
  • Evtihiev N.N., Economov N.A., Krebs A.R., Zamjatina N.A., Co-ferrite New magnetooptic recording material, IEEE Trans. Magn. 12 (1976), 773
  • Valenzuela R., Magnetic Ceramics, Cambridge University Press, Cambridge (1994)
  • Patil K. C., Manoharan S. S., Gajapathy D., Cheremisino N.P., Handbook of Ceramics and Composites, Synthesis and Properties vol. 1, Marcel Dekker Inc., New York (1990)
  • Costa A.C.F.M., Ni–Zn–Sm nanopowder ferrites: Morphological aspects and magnetic properties, J. Magn. Magn. Mater. 320 (2008) 742
  • Cullity B. D., Introduction to Magnetic Materials, Wiley, New Jersey (2009)
  • Haneda K, Morrish A.H., Noncollinear magnetic structure of CoFe2O4 small particles, J. Appl. Phys. 63 (1988) 4258
  • Goodenough J.B., Loeb A.L., Theory of Ionic Ordering, Crystal Distortion, and Magnetic Exchange Due to Covalent Forces in Spinels, Phys. Rev. 98 (1955) 391
  • Chinnasamy C.N., Mixed spinel structure in nanocrystalline NiFe2O4, Phys. Rev. B, 63 (2001) 184108
  • Sebastian M. D. J., Rudraswamy B., Radhakrishna M.C., Mössbauer effect studies and X-ray diffraction analysis of cobalt ferrite prepared in powder form by thermal decomposition method, Bull. Mater. Sci., 26 (2003) 509–515
  • Maaz K., Mumtaz A., Hasanain S. K., Ceylan A., Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route J. Magn. Magn. Mater. 308 (2007) 289-295
  • Hanh H., Quy O.K., Thuy N.P., Tung L.D., Spinu L., Synthesis of cobalt ferrite nanocrystallites by the forced hydrolysis method and investigation of their magnetic properties Physica B 327 (2003) 382–384
  • Thang P. D., Rijnders G., Dave H.A. Blank Spinel cobalt ferrite by complexometric synthesis J. Magn. Magn. Mater 295 (2005) 251–256
  • Bensebaa N, Alleg S., Greneche J.M., Phase transformations of mechanically alloyed Fe–Cr–P–C powders J. Alloys Compd. 393 (2005) 194
  • Zhang B., Li Z.Q., Synthesis of vanadium carbide by mechanical alloying J. Alloys Compd. 392 (2005) 214
  • Rico M. M., Greneche J. M., Alcazar G. A. P., Effect of boron on structural and magnetic properties of the Fe60Al40 system prepared by mechanical alloying J. Alloys Compd., 398 (2005) 26-32
  • Vijay R., Sundaresan R., Maiya M.P., Murthy S.S., Comparative evaluation of Mg–Ni hydrogen absorbing materials prepared by mechanical alloying Int. J. Hydrogen Energy 30 (2005) 501
  • Varin R.A., Chiu Ch., Structural stability of sodium borohydride (NaBH4) during controlled mechanical milling J. Alloys Compd. 397 (2005) 276–281
  • Poleti D., Karanovic L., Zdujic M., Jovalekic C., Brankovic Z., Mechanochemical synthesis of γ-Bi2O3 Solid State Sci. 6 (2004) 239
  • Tsuzuki T., McCormick P., ZnO nanoparticles synthesised by mechanochemical processing Scripta Mater. 44 (2001) 1731
  • Janot R., Guerard D., One-step synthesis of maghemite nanometric powders by ball-milling J. Alloys Co mpd. 333 (2002) 302
  • Ozcan S., Kaynar, M. B., Can M. M., Fırat T., Mat. Sci and Eng. B 121 (2005) 278–281
  • Şimşek T., Akansel S., Özcan Ş., Ceylan A., Synthesis of MnFe2O4 nanocrystals by wet-milling under atmospheric conditions, Cer. Int. 40(2014) 7953–7956
  • Avar B., Ozcan Ş., Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments Cer Int 40 (2014) 11123–11130
  • Kaynar M. B., Özcan Ş., Shah S. I., Synthesis and magnetic properties of nanocrystalline BaFe12O19 Cer Int 41 (2015) 11257–11263
  • Eshraghi M., Kameli P., Magnetic properties of CoFe2O4 nanoparticles prepared by thermal treatment of ball-milled precursors Current Applied Physics 11 (2011) 476-481
  • Sani R., Beitollahi A., Maksimov Y. V., Suzdalev I. P., Synthesis, phase formation study and magnetic properties of CoFe2O4 nanopowder prepared by mechanical milling J Mater Sci 42 (2007) 2126–2131
  • Manova E., Kunev B., Paneva D., Mitov I., Petrov L., Mechano-Synthesis, Characterization, and Magnetic Properties of Nanoparticles of Cobalt Ferrite, CoFe2O4 Chem. Mater. 16 (2004) 5689-5696
  • Šepelák V., Baabe D., Litterst F.J., Becker K.D., Structural disorder in the high-energy milled magnesium ferrite J. Applied Physics, 88 (2000), p. 5884
  • Cedeño-Mattei Y., Perales-Perez O., Uwakweh O. N.C., Show more Effect of high-energy ball milling time on structural and magnetic properties of nanocrystalline cobalt ferrite powders, J. Magn. Magn. Mater, 341 (2013) 17–24
  • Wang W. P., Yang H., Xian T., Jiang J. L., XPS and Magnetic Properties of CoFe2O4 Nanoparticles Synthesized by a Polyacrylamide Gel Route, Mater Trans 53, (2012) 1586-1589
  • Wang J., Sun J., Sun Q., Chen Q., One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties, Mater. Res. Bull. 38, 1113-1118 (2003)
  • Lyubutin I.S., Canted spin structure and the first order magnetic transition in CoFe2O4 nanoparticles coated by amorphous silica J. Magn. Magn. Mater, 415 (2016) 13-19
  • Peddis D., Interparticle Interactions and Magnetic Anisotropy in Cobalt Ferrite Nanoparticles: Influence of Molecular Coating Chem. Mater. (24) 2012, 1062−1071
Year 2019, Volume: 34 Issue: 2, 1101 - 1108, 23.05.2019
https://doi.org/10.17341/gazimmfd.460506

Abstract

References

  • Fujiwara T, Barium Ferrite Media for perpendicular Recording, IEEE T Magn, 21 (1985) 1480-1485
  • Pankhurst Q.A., Connolly J., Jones S. K., Dobson J., Applications of magnetic nanoparticles in biomedicine, J. Phys. D: Appl. Phys. 36 (2003) R167–R181
  • Tirosh E, Shemer G, Markovich G 2006 Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe Chem. Matter. 18 465-70
  • Yen S. K., Padmanabhan P., Selvan S. T., Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery, Theranostics, 3 (2013) 986–1003
  • Tartaj P., Nanomagnets-from Fundamentals physics to biomedicine, Curr. Nanosci. 2 (2006) 43-53
  • Pankhurst Q A, Connoly J, Jones S K, Dobson J, Applications of magnetic nanoparticles in biomedicine J. Phys. D: Appl. Phys. 36 (2003) R167-81
  • Ramos A. V., Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers Appl. Phys. Lett. 91 (2007) 122107.
  • Giri A.K. , Photomagnetism and structure in cobalt ferrite nanoparticles, Appl. Phys. Lett. 80 (2002) 2341
  • Martens J.W.D., Peeters W.L., Van Noort H.M., Errnan M., Optical, magneto-optical and mössbauer spectroscopy on Co3+ substituted cobalt ferrite Co2+Fe2−xCo3+xO4(0 ⩽ x ⩽ 2), J. Phys. Chem. Solids 46 (1985) 411-416
  • Okuno S.N., Hashimoto S., Inomata K., Preferred crystal orientation of cobalt ferrite thin films induced by ion bombardment during deposition, J. Appl. Phys. 71 (1992) 5926
  • Evtihiev N.N., Economov N.A., Krebs A.R., Zamjatina N.A., Co-ferrite New magnetooptic recording material, IEEE Trans. Magn. 12 (1976), 773
  • Valenzuela R., Magnetic Ceramics, Cambridge University Press, Cambridge (1994)
  • Patil K. C., Manoharan S. S., Gajapathy D., Cheremisino N.P., Handbook of Ceramics and Composites, Synthesis and Properties vol. 1, Marcel Dekker Inc., New York (1990)
  • Costa A.C.F.M., Ni–Zn–Sm nanopowder ferrites: Morphological aspects and magnetic properties, J. Magn. Magn. Mater. 320 (2008) 742
  • Cullity B. D., Introduction to Magnetic Materials, Wiley, New Jersey (2009)
  • Haneda K, Morrish A.H., Noncollinear magnetic structure of CoFe2O4 small particles, J. Appl. Phys. 63 (1988) 4258
  • Goodenough J.B., Loeb A.L., Theory of Ionic Ordering, Crystal Distortion, and Magnetic Exchange Due to Covalent Forces in Spinels, Phys. Rev. 98 (1955) 391
  • Chinnasamy C.N., Mixed spinel structure in nanocrystalline NiFe2O4, Phys. Rev. B, 63 (2001) 184108
  • Sebastian M. D. J., Rudraswamy B., Radhakrishna M.C., Mössbauer effect studies and X-ray diffraction analysis of cobalt ferrite prepared in powder form by thermal decomposition method, Bull. Mater. Sci., 26 (2003) 509–515
  • Maaz K., Mumtaz A., Hasanain S. K., Ceylan A., Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route J. Magn. Magn. Mater. 308 (2007) 289-295
  • Hanh H., Quy O.K., Thuy N.P., Tung L.D., Spinu L., Synthesis of cobalt ferrite nanocrystallites by the forced hydrolysis method and investigation of their magnetic properties Physica B 327 (2003) 382–384
  • Thang P. D., Rijnders G., Dave H.A. Blank Spinel cobalt ferrite by complexometric synthesis J. Magn. Magn. Mater 295 (2005) 251–256
  • Bensebaa N, Alleg S., Greneche J.M., Phase transformations of mechanically alloyed Fe–Cr–P–C powders J. Alloys Compd. 393 (2005) 194
  • Zhang B., Li Z.Q., Synthesis of vanadium carbide by mechanical alloying J. Alloys Compd. 392 (2005) 214
  • Rico M. M., Greneche J. M., Alcazar G. A. P., Effect of boron on structural and magnetic properties of the Fe60Al40 system prepared by mechanical alloying J. Alloys Compd., 398 (2005) 26-32
  • Vijay R., Sundaresan R., Maiya M.P., Murthy S.S., Comparative evaluation of Mg–Ni hydrogen absorbing materials prepared by mechanical alloying Int. J. Hydrogen Energy 30 (2005) 501
  • Varin R.A., Chiu Ch., Structural stability of sodium borohydride (NaBH4) during controlled mechanical milling J. Alloys Compd. 397 (2005) 276–281
  • Poleti D., Karanovic L., Zdujic M., Jovalekic C., Brankovic Z., Mechanochemical synthesis of γ-Bi2O3 Solid State Sci. 6 (2004) 239
  • Tsuzuki T., McCormick P., ZnO nanoparticles synthesised by mechanochemical processing Scripta Mater. 44 (2001) 1731
  • Janot R., Guerard D., One-step synthesis of maghemite nanometric powders by ball-milling J. Alloys Co mpd. 333 (2002) 302
  • Ozcan S., Kaynar, M. B., Can M. M., Fırat T., Mat. Sci and Eng. B 121 (2005) 278–281
  • Şimşek T., Akansel S., Özcan Ş., Ceylan A., Synthesis of MnFe2O4 nanocrystals by wet-milling under atmospheric conditions, Cer. Int. 40(2014) 7953–7956
  • Avar B., Ozcan Ş., Structural evolutions in Ti and TiO2 powders by ball milling and subsequent heat-treatments Cer Int 40 (2014) 11123–11130
  • Kaynar M. B., Özcan Ş., Shah S. I., Synthesis and magnetic properties of nanocrystalline BaFe12O19 Cer Int 41 (2015) 11257–11263
  • Eshraghi M., Kameli P., Magnetic properties of CoFe2O4 nanoparticles prepared by thermal treatment of ball-milled precursors Current Applied Physics 11 (2011) 476-481
  • Sani R., Beitollahi A., Maksimov Y. V., Suzdalev I. P., Synthesis, phase formation study and magnetic properties of CoFe2O4 nanopowder prepared by mechanical milling J Mater Sci 42 (2007) 2126–2131
  • Manova E., Kunev B., Paneva D., Mitov I., Petrov L., Mechano-Synthesis, Characterization, and Magnetic Properties of Nanoparticles of Cobalt Ferrite, CoFe2O4 Chem. Mater. 16 (2004) 5689-5696
  • Šepelák V., Baabe D., Litterst F.J., Becker K.D., Structural disorder in the high-energy milled magnesium ferrite J. Applied Physics, 88 (2000), p. 5884
  • Cedeño-Mattei Y., Perales-Perez O., Uwakweh O. N.C., Show more Effect of high-energy ball milling time on structural and magnetic properties of nanocrystalline cobalt ferrite powders, J. Magn. Magn. Mater, 341 (2013) 17–24
  • Wang W. P., Yang H., Xian T., Jiang J. L., XPS and Magnetic Properties of CoFe2O4 Nanoparticles Synthesized by a Polyacrylamide Gel Route, Mater Trans 53, (2012) 1586-1589
  • Wang J., Sun J., Sun Q., Chen Q., One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties, Mater. Res. Bull. 38, 1113-1118 (2003)
  • Lyubutin I.S., Canted spin structure and the first order magnetic transition in CoFe2O4 nanoparticles coated by amorphous silica J. Magn. Magn. Mater, 415 (2016) 13-19
  • Peddis D., Interparticle Interactions and Magnetic Anisotropy in Cobalt Ferrite Nanoparticles: Influence of Molecular Coating Chem. Mater. (24) 2012, 1062−1071
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Mehmet Burak Kaynar

Ahmet Toprak This is me

Şadan Özcan This is me

Publication Date May 23, 2019
Submission Date October 27, 2017
Published in Issue Year 2019 Volume: 34 Issue: 2

Cite

APA Kaynar, M. B., Toprak, A., & Özcan, Ş. (2019). Islak öğütme yöntemi ile metalik demir ve kobalttan hazırlanmış CoFe2O4 nanoyapılarda doyum manyetizasyonunun yapıya bağlı değişimi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(2), 1101-1108. https://doi.org/10.17341/gazimmfd.460506
AMA Kaynar MB, Toprak A, Özcan Ş. Islak öğütme yöntemi ile metalik demir ve kobalttan hazırlanmış CoFe2O4 nanoyapılarda doyum manyetizasyonunun yapıya bağlı değişimi. GUMMFD. May 2019;34(2):1101-1108. doi:10.17341/gazimmfd.460506
Chicago Kaynar, Mehmet Burak, Ahmet Toprak, and Şadan Özcan. “Islak öğütme yöntemi Ile Metalik Demir Ve Kobalttan hazırlanmış CoFe2O4 nanoyapılarda Doyum Manyetizasyonunun yapıya bağlı değişimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, no. 2 (May 2019): 1101-8. https://doi.org/10.17341/gazimmfd.460506.
EndNote Kaynar MB, Toprak A, Özcan Ş (May 1, 2019) Islak öğütme yöntemi ile metalik demir ve kobalttan hazırlanmış CoFe2O4 nanoyapılarda doyum manyetizasyonunun yapıya bağlı değişimi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34 2 1101–1108.
IEEE M. B. Kaynar, A. Toprak, and Ş. Özcan, “Islak öğütme yöntemi ile metalik demir ve kobalttan hazırlanmış CoFe2O4 nanoyapılarda doyum manyetizasyonunun yapıya bağlı değişimi”, GUMMFD, vol. 34, no. 2, pp. 1101–1108, 2019, doi: 10.17341/gazimmfd.460506.
ISNAD Kaynar, Mehmet Burak et al. “Islak öğütme yöntemi Ile Metalik Demir Ve Kobalttan hazırlanmış CoFe2O4 nanoyapılarda Doyum Manyetizasyonunun yapıya bağlı değişimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/2 (May 2019), 1101-1108. https://doi.org/10.17341/gazimmfd.460506.
JAMA Kaynar MB, Toprak A, Özcan Ş. Islak öğütme yöntemi ile metalik demir ve kobalttan hazırlanmış CoFe2O4 nanoyapılarda doyum manyetizasyonunun yapıya bağlı değişimi. GUMMFD. 2019;34:1101–1108.
MLA Kaynar, Mehmet Burak et al. “Islak öğütme yöntemi Ile Metalik Demir Ve Kobalttan hazırlanmış CoFe2O4 nanoyapılarda Doyum Manyetizasyonunun yapıya bağlı değişimi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 34, no. 2, 2019, pp. 1101-8, doi:10.17341/gazimmfd.460506.
Vancouver Kaynar MB, Toprak A, Özcan Ş. Islak öğütme yöntemi ile metalik demir ve kobalttan hazırlanmış CoFe2O4 nanoyapılarda doyum manyetizasyonunun yapıya bağlı değişimi. GUMMFD. 2019;34(2):1101-8.