Araştırma Makalesi
BibTex RIS Kaynak Göster

Hasargörebilirlik analizlerinde yer hareketi veri setine ve şiddet ölçüsüne bağlı epistemik belirsizliğin değerlendirilmesi

Yıl 2019, Cilt: 34 Sayı: 4, 2125 - 2140, 25.06.2019
https://doi.org/10.17341/gazimmfd.424054

Öz

Yapıların hasargörebilirlik analizlerinin ana unsurlarını yer hareketi
veri setinin derlenmesi, yapısal analiz ve yer hareketi şiddet ölçüsü seçimi olarak
sıralamak mümkündür. Bu çalışmada, hasargörebilirlik analizlerinde deprem veri
seti ve şiddet ölçüsü seçimine bağlı olarak ortaya çıkan epistemik belirsizlikler
değerlendirilmiştir. Bu amaçla, dört farklı deprem veri seti ve seçilen üç
farklı şiddet ölçüsü için bina türü yapı simülasyonlarına ait hasar potansiyeli
eğrileri iki farklı yaklaşıma göre geliştirilmiş ve olası farklılıklar
incelenmiştir. Hasar potansiyeli eğrileri ve deterministik deprem senaryoları
kullanılarak yapılan detaylı değerlendirmeler derlenen deprem veri setleri,
şiddet ölçüsü seçimi ve hasar potansiyeli eğrilerinin türetilmesinde uygulanan
yöntemlerin sonuçları belirli düzeylerde etkileyebileceğini göstermiştir.
Bununla birlikte sonuçları etkileyen en etkin parametrenin şiddet ölçüsü olduğu
ve efektif şiddet ölçüsü seçiminin hasargörebilirlik analizlerindeki epistemik
belirsizliği alt seviyelere indirgeyebileceği sonucuna ulaşılmıştır.

Kaynakça

  • Akkar S., Azak T., Çan T., vd., Evolution of seismic hazard maps in Turkey, Bulletin of Earthquake Engineering, doi 10.1007/s10518-018-0349-1, 2018.
  • Akkar S., Sucuoğlu H., Yakut A., Displacement-Based Fragility Functions for Low- and Mid-rise Ordinary Concrete Buildings, Earthquake Spectra, 21(4), 901–927, 2005.
  • Ay B. Ö., Erberik M. A., Vulnerability of Turkish Low-Rise and Mid-Rise Reinforced Concrete Frame Structures, Journal of Earthquake Engineering, 12(S2), 2–11, 2008.
  • Erberik M. A., Fragility-based assessment of typical mid-rise and low-rise RC buildings in Turkey, Engineering Structures 30, 1360–1374, 2008.
  • Hsieh M. H., Lee B. J., Lei T. C., Lin J. Y., Development of medium-and low-rise reinforced concrete building fragility curves based on Chi–Chi Earthquake data, Natural Hazards, 69(1), 695–728, 2013.
  • Uçar T., Düzgün M., Derivation of analytical fragility curves for RC buildings based on nonlinear pushover analysis, İMO Teknik Dergi, 24(3), 6421–6446, 2013.
  • Mazılıgüney L., Yakut A., Kadaş K., Kalem İ., Fragility analysis of reinforced concrete school buildings using alternative intensity measure-based ground motion sets, 2nd Turkish Conference on Earthquake Engineering and Seismology, Eskişehir-Türkiye, 25-27 Eylül, 2013.
  • Hancilar U., Çaktı E., Erdik M., Franco G.E., Deodatis G., Earthquake vulnerability of school buildings: Probabilistic structural fragility analyses, Soil Dynamics and Earthquake Engineering 67: 169–178, 2014.
  • Karimzadeh S., Sakan A., Erberik M. A., Yakut A., Seismic damage assessment based on regional synthetic ground motion dataset: a case study for Erzincan, Turkey, Natural Hazards, doi.org/10.1007/s11069-018-3255-6, 2018.
  • FEMA 154: Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook, Federal Emergency Management Agency, Washington, D.C, 1988.
  • Farsangi E.N., Rezvani F.H., Talebi M., Hashemi S.A.., Seismic Risk Analysis of Steel-MRFs by Means of Fragility Curves in High Seismic Zones, Advances in Structural Engineering 17(9), 1227–1240, 2014.
  • Lin S.-L., Uma S. R., King A., Empirical Fragility Curves for Non-Residential Buildings from the 2010–2011 Canterbury Earthquake Sequence, Journal of Earthquake Engineering, 22(5), 749–777, 2018.
  • Zakeri B., Padgett J. E., Amiri G. G., Fragility Analysis of Skewed Single-Frame Concrete Box-Girder Bridges, ASCE Journal of Performance of Constructed Facilities, 28(3): 571-582, 2014.
  • Kadaş K., Yakut A., Re-examination of a Spectral Ground Motion Intensity Measure Based on Predicted Period Elongation, 10th International Congress on Advances in Civil Engineering, Ankara, Türkiye, 17-19 Ekim, 2012.
  • Baker J. W., Lin T., Shahi S. K., Jayaram N., New Ground Motion Selection Procedures and Selected Motions for the PEER Transportation Research Program. PEER Technical Report 2011/03, 106 s, 2011.
  • Kwon O.S., Elnashai A., The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure, Engineering Structures, 28, 289–303, 2006.
  • Padgett J.E., Nielson B.G., DesRoches R., Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios, Earthquake Engineering and Structural Dynamics, 37, 711-725, 2008.
  • Akkar S., Özen Ö., Effect of peak ground velocity on deformation demands for SDOF systems, Earthquake Engineering and Structural Dynamics, 34, 1551-1571, 2005.
  • Luco N., Cornell A.C., Structure‐specific scalar intensity measures for near‐source and ordinary earthquake ground motions, Earthquake Spectra, 23, 357-392, 2007.
  • Shome N., Cornell A.C., Probabilistic Seismic Demand Analysis of Nonlinear Structures, Stanford University, Reliability of Marine Structures Program, Report No. RMS‐35, California, 1999.
  • Bazzurro P., Cornell A.C., Vector‐values probabilistic seismic hazard analysis (VP‐SHA), 7. ABD Ulusal Deprem Mühendisliği Konferansı, 21-25 Temmuz, Boston, MA, 2002.
  • Baker J.W., Cornell C.A., A vector‐valued ground motion intensity measure consisting of spectral acceleration and epsilon, Earthquake Engineering and Structural Dynamics, 34, 1193-1217, 2005.
  • DHS, HAZUS‐MH MR4 2009, Earthquake Model User Manual. Department of Homeland Security, Federal Emergency Management Agency, Mitigation Division, Washington DC, 2009.
  • Shafieezadeh A., Ramanathan K., Padgett J.E., DesRoches R., Fractional order intensity measures for probabilistic seismic demand modeling applied to highway bridges, Earthquake Engineering and Structural Dynamics, 41, 391-409, 2012.
  • Kale Ö., Evaluation of the Use of Fractional Order Intensity Measures in Probabilistic Seismic Demand Models by Single Degree of Freedom Systems, Süleyman Demirel University Journal of Natural and Applied Sciences, (değerlendirmede), 2018
  • Clough R. W., Johnston S. B., Effect of stiffness degradation on earthquake ductility requirements, 2. Ulusal Japon Deprem Mühendisliği Konferansı, Japonya, 227-232, 1966.
  • Mahin S. A., Bertero V. V., Nonlinear seismic response of a coupled wall system, Journal of Structural Engineering ASCE, 102 (ST9), 1759-1780, 1976.
  • Kadaş K., Yakut A., Kazaz İ., Spectral Ground Motion Intensity Based on Capacity and Period Elongation, ASCE Journal of Structural Engineering, 137(3), 401-409, 2011.
  • Kale Ö., Akkar S., Ansari A., Hamzehloo H., A ground-motion predictive model for Iran and Turkey for horizontal PGA, PGV and 5%-damped response spectrum: Investigation of possible regional effects, Bulletin of the Seismological Society of America, 105(2A), 963-980, 2015.
  • Kale Ö., An Empirical Relationship Based on High-pass Filtering to Estimate Usable Period Range for Nonlinear SDOF Response, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2009.
  • Cornell A.C., Jalayer F., Hamburger R.O., Foutch A.D., Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines, Journal of the Structural Engineering, 128, 526-533, 2002.
  • Baker J. W., Efficient analytical fragility function fitting using dynamic structural analysis, Earthquake Spectra, 31(1), 579-599, 2015.
  • Melchers R. E., Structural Reliability Analysis and Prediction, JohnWiley & Sons Ltd., West Sussex, England, second edition, 2002.
  • Akkar S., Sandıkkaya M. A., Şenyurt M., Sisi A.A., Ay B.Ö., Reference database for seismic ground motion in Europe (RESORCE), Bulletin of Earthquake Engineering, 12, 311–339, 2014.
  • Kale Ö., Padgett J. E., Shafieezadeh, A., A Ground Motion Prediction Equation for Novel Peak Ground Fractional Order Response Intensity Measures, Bulletin of Earthquake Engineering, 15, 9, 3437-3461, 2017.
Yıl 2019, Cilt: 34 Sayı: 4, 2125 - 2140, 25.06.2019
https://doi.org/10.17341/gazimmfd.424054

Öz

The main components of fragility analysis of structures can be listed as
compilation of ground motion dataset, structural analysis and selection of ground
motion intensity measures. In this study, epistemic uncertainty with respect to
the selection of the ground motion dataset and intensity measure is evaluated. In
this respect, the fragility curves of building type structural simulations for four
different ground motion dataset and three selected intensity measures are
developed by considering two different approaches and the probable variations
are investigated. The detailed evaluations which depend on the fragility curves
and the deterministic earthquake scenarios indicate that compiled ground motion
datasets, selected intensity measures and the fragility curve development
approaches can considerably affect the analysis results. However, it can be
concluded that the most influential parameter on the analysis results is
intensity measure and its effective selection can considerably decrease the
epistemic uncertainty in fragility analysis.

Kaynakça

  • Akkar S., Azak T., Çan T., vd., Evolution of seismic hazard maps in Turkey, Bulletin of Earthquake Engineering, doi 10.1007/s10518-018-0349-1, 2018.
  • Akkar S., Sucuoğlu H., Yakut A., Displacement-Based Fragility Functions for Low- and Mid-rise Ordinary Concrete Buildings, Earthquake Spectra, 21(4), 901–927, 2005.
  • Ay B. Ö., Erberik M. A., Vulnerability of Turkish Low-Rise and Mid-Rise Reinforced Concrete Frame Structures, Journal of Earthquake Engineering, 12(S2), 2–11, 2008.
  • Erberik M. A., Fragility-based assessment of typical mid-rise and low-rise RC buildings in Turkey, Engineering Structures 30, 1360–1374, 2008.
  • Hsieh M. H., Lee B. J., Lei T. C., Lin J. Y., Development of medium-and low-rise reinforced concrete building fragility curves based on Chi–Chi Earthquake data, Natural Hazards, 69(1), 695–728, 2013.
  • Uçar T., Düzgün M., Derivation of analytical fragility curves for RC buildings based on nonlinear pushover analysis, İMO Teknik Dergi, 24(3), 6421–6446, 2013.
  • Mazılıgüney L., Yakut A., Kadaş K., Kalem İ., Fragility analysis of reinforced concrete school buildings using alternative intensity measure-based ground motion sets, 2nd Turkish Conference on Earthquake Engineering and Seismology, Eskişehir-Türkiye, 25-27 Eylül, 2013.
  • Hancilar U., Çaktı E., Erdik M., Franco G.E., Deodatis G., Earthquake vulnerability of school buildings: Probabilistic structural fragility analyses, Soil Dynamics and Earthquake Engineering 67: 169–178, 2014.
  • Karimzadeh S., Sakan A., Erberik M. A., Yakut A., Seismic damage assessment based on regional synthetic ground motion dataset: a case study for Erzincan, Turkey, Natural Hazards, doi.org/10.1007/s11069-018-3255-6, 2018.
  • FEMA 154: Rapid Visual Screening of Buildings for Potential Seismic Hazards: A Handbook, Federal Emergency Management Agency, Washington, D.C, 1988.
  • Farsangi E.N., Rezvani F.H., Talebi M., Hashemi S.A.., Seismic Risk Analysis of Steel-MRFs by Means of Fragility Curves in High Seismic Zones, Advances in Structural Engineering 17(9), 1227–1240, 2014.
  • Lin S.-L., Uma S. R., King A., Empirical Fragility Curves for Non-Residential Buildings from the 2010–2011 Canterbury Earthquake Sequence, Journal of Earthquake Engineering, 22(5), 749–777, 2018.
  • Zakeri B., Padgett J. E., Amiri G. G., Fragility Analysis of Skewed Single-Frame Concrete Box-Girder Bridges, ASCE Journal of Performance of Constructed Facilities, 28(3): 571-582, 2014.
  • Kadaş K., Yakut A., Re-examination of a Spectral Ground Motion Intensity Measure Based on Predicted Period Elongation, 10th International Congress on Advances in Civil Engineering, Ankara, Türkiye, 17-19 Ekim, 2012.
  • Baker J. W., Lin T., Shahi S. K., Jayaram N., New Ground Motion Selection Procedures and Selected Motions for the PEER Transportation Research Program. PEER Technical Report 2011/03, 106 s, 2011.
  • Kwon O.S., Elnashai A., The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure, Engineering Structures, 28, 289–303, 2006.
  • Padgett J.E., Nielson B.G., DesRoches R., Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios, Earthquake Engineering and Structural Dynamics, 37, 711-725, 2008.
  • Akkar S., Özen Ö., Effect of peak ground velocity on deformation demands for SDOF systems, Earthquake Engineering and Structural Dynamics, 34, 1551-1571, 2005.
  • Luco N., Cornell A.C., Structure‐specific scalar intensity measures for near‐source and ordinary earthquake ground motions, Earthquake Spectra, 23, 357-392, 2007.
  • Shome N., Cornell A.C., Probabilistic Seismic Demand Analysis of Nonlinear Structures, Stanford University, Reliability of Marine Structures Program, Report No. RMS‐35, California, 1999.
  • Bazzurro P., Cornell A.C., Vector‐values probabilistic seismic hazard analysis (VP‐SHA), 7. ABD Ulusal Deprem Mühendisliği Konferansı, 21-25 Temmuz, Boston, MA, 2002.
  • Baker J.W., Cornell C.A., A vector‐valued ground motion intensity measure consisting of spectral acceleration and epsilon, Earthquake Engineering and Structural Dynamics, 34, 1193-1217, 2005.
  • DHS, HAZUS‐MH MR4 2009, Earthquake Model User Manual. Department of Homeland Security, Federal Emergency Management Agency, Mitigation Division, Washington DC, 2009.
  • Shafieezadeh A., Ramanathan K., Padgett J.E., DesRoches R., Fractional order intensity measures for probabilistic seismic demand modeling applied to highway bridges, Earthquake Engineering and Structural Dynamics, 41, 391-409, 2012.
  • Kale Ö., Evaluation of the Use of Fractional Order Intensity Measures in Probabilistic Seismic Demand Models by Single Degree of Freedom Systems, Süleyman Demirel University Journal of Natural and Applied Sciences, (değerlendirmede), 2018
  • Clough R. W., Johnston S. B., Effect of stiffness degradation on earthquake ductility requirements, 2. Ulusal Japon Deprem Mühendisliği Konferansı, Japonya, 227-232, 1966.
  • Mahin S. A., Bertero V. V., Nonlinear seismic response of a coupled wall system, Journal of Structural Engineering ASCE, 102 (ST9), 1759-1780, 1976.
  • Kadaş K., Yakut A., Kazaz İ., Spectral Ground Motion Intensity Based on Capacity and Period Elongation, ASCE Journal of Structural Engineering, 137(3), 401-409, 2011.
  • Kale Ö., Akkar S., Ansari A., Hamzehloo H., A ground-motion predictive model for Iran and Turkey for horizontal PGA, PGV and 5%-damped response spectrum: Investigation of possible regional effects, Bulletin of the Seismological Society of America, 105(2A), 963-980, 2015.
  • Kale Ö., An Empirical Relationship Based on High-pass Filtering to Estimate Usable Period Range for Nonlinear SDOF Response, Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2009.
  • Cornell A.C., Jalayer F., Hamburger R.O., Foutch A.D., Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines, Journal of the Structural Engineering, 128, 526-533, 2002.
  • Baker J. W., Efficient analytical fragility function fitting using dynamic structural analysis, Earthquake Spectra, 31(1), 579-599, 2015.
  • Melchers R. E., Structural Reliability Analysis and Prediction, JohnWiley & Sons Ltd., West Sussex, England, second edition, 2002.
  • Akkar S., Sandıkkaya M. A., Şenyurt M., Sisi A.A., Ay B.Ö., Reference database for seismic ground motion in Europe (RESORCE), Bulletin of Earthquake Engineering, 12, 311–339, 2014.
  • Kale Ö., Padgett J. E., Shafieezadeh, A., A Ground Motion Prediction Equation for Novel Peak Ground Fractional Order Response Intensity Measures, Bulletin of Earthquake Engineering, 15, 9, 3437-3461, 2017.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Özkan Kale 0000-0003-3997-4008

Yayımlanma Tarihi 25 Haziran 2019
Gönderilme Tarihi 16 Mayıs 2018
Kabul Tarihi 25 Şubat 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 34 Sayı: 4

Kaynak Göster

APA Kale, Ö. (2019). Hasargörebilirlik analizlerinde yer hareketi veri setine ve şiddet ölçüsüne bağlı epistemik belirsizliğin değerlendirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(4), 2125-2140. https://doi.org/10.17341/gazimmfd.424054
AMA Kale Ö. Hasargörebilirlik analizlerinde yer hareketi veri setine ve şiddet ölçüsüne bağlı epistemik belirsizliğin değerlendirilmesi. GUMMFD. Haziran 2019;34(4):2125-2140. doi:10.17341/gazimmfd.424054
Chicago Kale, Özkan. “Hasargörebilirlik Analizlerinde Yer Hareketi Veri Setine Ve şiddet ölçüsüne bağlı Epistemik belirsizliğin değerlendirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, sy. 4 (Haziran 2019): 2125-40. https://doi.org/10.17341/gazimmfd.424054.
EndNote Kale Ö (01 Haziran 2019) Hasargörebilirlik analizlerinde yer hareketi veri setine ve şiddet ölçüsüne bağlı epistemik belirsizliğin değerlendirilmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34 4 2125–2140.
IEEE Ö. Kale, “Hasargörebilirlik analizlerinde yer hareketi veri setine ve şiddet ölçüsüne bağlı epistemik belirsizliğin değerlendirilmesi”, GUMMFD, c. 34, sy. 4, ss. 2125–2140, 2019, doi: 10.17341/gazimmfd.424054.
ISNAD Kale, Özkan. “Hasargörebilirlik Analizlerinde Yer Hareketi Veri Setine Ve şiddet ölçüsüne bağlı Epistemik belirsizliğin değerlendirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/4 (Haziran 2019), 2125-2140. https://doi.org/10.17341/gazimmfd.424054.
JAMA Kale Ö. Hasargörebilirlik analizlerinde yer hareketi veri setine ve şiddet ölçüsüne bağlı epistemik belirsizliğin değerlendirilmesi. GUMMFD. 2019;34:2125–2140.
MLA Kale, Özkan. “Hasargörebilirlik Analizlerinde Yer Hareketi Veri Setine Ve şiddet ölçüsüne bağlı Epistemik belirsizliğin değerlendirilmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 34, sy. 4, 2019, ss. 2125-40, doi:10.17341/gazimmfd.424054.
Vancouver Kale Ö. Hasargörebilirlik analizlerinde yer hareketi veri setine ve şiddet ölçüsüne bağlı epistemik belirsizliğin değerlendirilmesi. GUMMFD. 2019;34(4):2125-40.