Research Article
BibTex RIS Cite

Elektroperokson prosesi ile tannik asit oksidasyonu

Year 2020, Volume: 35 Issue: 1, 51 - 60, 25.10.2019
https://doi.org/10.17341/gazimmfd.425326

Abstract

Elektroperokson
(E-perokson) prosesi, ozon ve elektrooksidasyon proseslerini bir arada
bulunduran bir ileri oksidasyon yöntemidir. 
E-perokson prosesi, oksijenden ozon üretiminde jeneratörün dönüşüm
veriminin düşük olmasından faydalanarak, enerji kaybı olarak sisteme verilen
oksijeni, karbon bazlı katotta indirgeyerek hidrojen perokside dönüştürür. Hidrojen
peroksidin sonrasında ozon ile reaksiyona girerek OH• radikalleri oluşturması
nedeniyle E-perokson, yüksek oksidasyon özelliğine sahip proses şartları
sağlar.  Ancak, tannik asidin düşük pH’ya
ve ozon reaktif aromatik yapıya sahip karakteristik özellikleri sebebi ile
E-perokson prosesinin daha fazla OH• radikali oluşturma üstünlüğü, tannik asit
oksidasyonu şartlarında elde edilememiştir. Ozonlama sisteminin E-peroksona
dönüştürülmesiyle %10 daha fazla çözünmüş organik karbon mineralizasyonu sağlanmıştır.
Tannik asidin oksidasyonunda H2O2 doğrudan görev
almazken, reaksiyon başlarında moleküler ozon reaksiyonu domine etmiştir. Ozona
daha az reaktif karboksilik asitlerin oluşmasıyla, oksidasyon OH• radikalleri
tarafından yönetilmiş ve sözü edilen verim artışı sağlanmıştır. 

References

  • [1] Chen H.-W., Kuo Y.-L., Chiou C.-S., You S.-W., Ma C.-M., Chang C.-T., Mineralization of reactive Black 5 in aqueous solution by ozone/H2O2 in the presence of a magnetic catalyst, Journal of Hazardous Materials, 174 (1-3), 795-800, 2010.
  • [2] Duguet J., Basic concepts of industrial engineering for the design of new ozonation processes, Ozone News, 32 (6), 15-19, 2004.
  • [3] Barrera-Díaz C., Cañizares P., Fernández F., Natividad R., Rodrigo M., Electrochemical advanced oxidation processes: an overview of the current applications to actual industrial effluents, Journal of the Mexican Chemical Society, 58 (3), 256-275, 2014.
  • [4] Gogate P. R., Pandit A. B., A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Advances in Environmental Research, 8 (3), 501-551, 2004.
  • [5] Munter R., Advanced oxidation processes–current status and prospects, Proc. Estonian Acad. Sci. Chem, 50 (2), 59-80, 2001.
  • [6] Von Gunten U., Ozonation of drinking water: Part I. Oxidation kinetics and product formation, Water research, 37 (7), 1443-1467, 2003.
  • [7] Barndok H., Hermosilla D., Cortijo L., Torres E., Blanco Á., Electrooxidation of industrial wastewater containing 1, 4-dioxane in the presence of different salts, Environmental Science and Pollution Research, 21 (8), 5701-5712, 2014.
  • [8] Wang Y., The Electro-peroxone Technology as a Promising Advanced Oxidation Process for Water and Wastewater Treatment, Editor, "Electro-Fenton Process: New Trends and Scale-Up, Hdb Env Chem", Springer, 2017.
  • [9] Yuan S., Li Z., Wang Y., Effective degradation of methylene blue by a novel electrochemically driven process, Electrochemistry Communications, 29, 48-51, 2013.
  • [10] Turkay O., Ersoy Z. G., Barışçı S., Review—The Application of an Electro-Peroxone Process in Water and Wastewater Treatment, Journal of The Electrochemical Society, 164 (6), E94-E102, 2017.
  • [11] Bakheet B., Yuan S., Li Z., Wang H., Zuo J., Komarneni S., Wang Y., Electro-peroxone treatment of Orange II dye wastewater, Water research, 47 (16), 6234-6243, 2013.
  • [12] Li X., Sun S., Zhang X., Liu G., Zheng C. R., Zheng J., Zhang D., Yao H., Combined electro-catazone/electro-peroxone process for rapid and effective Rhodamine B degradation, Separation and Purification Technology, 178, 189-192, 2017.
  • [13] Li X., Wang Y., Yuan S., Li Z., Wang B., Huang J., Deng S., Yu G., Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process, Water research, 63, 81-93, 2014.
  • [14] Guo W., Wu Q.-L., Zhou X.-J., Cao H.-O., Du J.-S., Yin R.-L., Ren N.-Q., Enhanced amoxicillin treatment using the electro-peroxone process: key factors and degradation mechanism, RSC Advances, 5 (65), 52695-52702, 2015.
  • [15] Yao W., Wang X., Yang H., Yu G., Deng S., Huang J., Wang B., Wang Y., Removal of pharmaceuticals from secondary effluents by an electro-peroxone process, Water research, 88, 826-835, 2016.
  • [16] Turkay O., Barışçı S., Sillanpää M., E-peroxone Process for the Treatment of Laundry Wastewater: A Case Study, Journal of Environmental Chemical Engineering, 2017.
  • [17] Li Z., Yuan S., Qiu C., Wang Y., Pan X., Wang J., Wang C., Zuo J., Effective degradation of refractory organic pollutants in landfill leachate by electro-peroxone treatment, Electrochimica Acta, 102, 174-182, 2013.
  • [18] Li Y., Shen W., Fu S., Yang H., Yu G., Wang Y., Inhibition of bromate formation during drinking water treatment by adapting ozonation to electro-peroxone process, Chemical Engineering Journal, 264, 322-328, 2015.
  • [19] Mao Y., Guo D., Yao W., Wang X., Yang H., Xie Y. F., Komarneni S., Yu G., Wang Y., Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination, Water research, 130, 322-332, 2018.
  • [20] Govindaraj M., Muthukumar M., Bhaskar Raju G., Electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2‐coated titanium and graphite anodes, Environmental technology, 31 (14), 1613-1622, 2010.
  • [21] Perkowski J., Dawidow U., Jóźwiak W. K., Advanced Oxidation of Tannic Acid in Aqueous Solution, Ozone: Science & Engineering, 25 (3), 199-209, 2003.
  • [22] Kloster M. B., Determination of tannin and lignin, Journal American Water Works Association, 66 (1), 44, 1974.
  • [23] APHA, Standard methods for the examination of water and wastewater, 19 Edition, 1998.
  • [24] Milan-Segovia N., Wang Y., Cannon F. S., Voigt R. C., Furness J. C., Comparison of hydroxyl radical generation for various advanced oxidation combinations as applied to foundries, Ozone: Science and Engineering, 29 (6), 461-471, 2007.
  • [25] Fischbacher A., von Sonntag J., von Sonntag C., Schmidt T. C., The •OH radical yield in the H2O2+O3 (peroxone) reaction, Environmental science & technology, 47 (17), 9959-9964, 2013.
  • [26] Kim J. K., Metcalfe I. S., Investigation of the generation of hydroxyl radicals and their oxidative role in the presence of heterogeneous copper catalysts, Chemosphere, 69 (5), 689-696, 2007.
  • [27] Andreozzi R., Caprio V., Insola A., Marotta R., Advanced oxidation processes (AOP) for water purification and recovery, Catalysis today, 53 (1), 51-59, 1999.
  • [28] Wang H., Bakheet B., Yuan S., Li X., Yu G., Murayama S., Wang Y., Kinetics and energy efficiency for the degradation of 1, 4-dioxane by electro-peroxone process, Journal of hazardous materials, 294, 90-98, 2015.
  • [29] Wang H., Zhan J., Yao W., Wang B., Deng S., Huang J., Yu G., Wang Y., Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process, Water research, 130, 127-138, 2018.
  • [30] Kerc A., Bekbolet M., Saatci A. M., Sequential oxidation of humic acids by ozonation and photocatalysis, Ozone: Science & Engineering, 25 (6), 497-504, 2003.
  • [31] Xiang Li Y. W., Jian Zhao, Huijiao Wang, Bin Wang, Jun Huang, Shubo Deng, Gang Yu, Gang, Electro-peroxone treatment of the antidepressant venlafaxine: Operational parameters and mechanis, Hazardous Materials, 10, 2015.

Tannic acid oxidation by electroperoxone

Year 2020, Volume: 35 Issue: 1, 51 - 60, 25.10.2019
https://doi.org/10.17341/gazimmfd.425326

Abstract

The electro-peroxone (E-peroxone) process as an
advanced oxidation process integrates ozonation and electrooxidation processes
in a system. E-peroxone process produces in situ
H2O2 from the excessive
oxygen during ozone generation. E-peroxone provides a highly oxidative reaction
conditions due to further reaction of
H2O2 with ozone to produce OH• radicals. Since tannic acid has low pH and
ozone-reactive aromatic content as its characteristic behavior, the superiority of the E-peroxone process to form more OH•
radicals has not been achieved under tannic acid oxidation conditions. By
converting the ozonation system to E-peroxone, 10% more dissolved organic
carbon mineralization was provided. While H2O2 did not
directly involved in the oxidation of tannic acid, the molecular ozone reaction
dominates the oxidation at the beginning of the reaction. With the formation of
less ozone-reactive structures (i.e. carboxylic acids), the oxidation is directed
by the OH• radicals and the mentioned efficiency was provided in E-peroxone
process. 

References

  • [1] Chen H.-W., Kuo Y.-L., Chiou C.-S., You S.-W., Ma C.-M., Chang C.-T., Mineralization of reactive Black 5 in aqueous solution by ozone/H2O2 in the presence of a magnetic catalyst, Journal of Hazardous Materials, 174 (1-3), 795-800, 2010.
  • [2] Duguet J., Basic concepts of industrial engineering for the design of new ozonation processes, Ozone News, 32 (6), 15-19, 2004.
  • [3] Barrera-Díaz C., Cañizares P., Fernández F., Natividad R., Rodrigo M., Electrochemical advanced oxidation processes: an overview of the current applications to actual industrial effluents, Journal of the Mexican Chemical Society, 58 (3), 256-275, 2014.
  • [4] Gogate P. R., Pandit A. B., A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Advances in Environmental Research, 8 (3), 501-551, 2004.
  • [5] Munter R., Advanced oxidation processes–current status and prospects, Proc. Estonian Acad. Sci. Chem, 50 (2), 59-80, 2001.
  • [6] Von Gunten U., Ozonation of drinking water: Part I. Oxidation kinetics and product formation, Water research, 37 (7), 1443-1467, 2003.
  • [7] Barndok H., Hermosilla D., Cortijo L., Torres E., Blanco Á., Electrooxidation of industrial wastewater containing 1, 4-dioxane in the presence of different salts, Environmental Science and Pollution Research, 21 (8), 5701-5712, 2014.
  • [8] Wang Y., The Electro-peroxone Technology as a Promising Advanced Oxidation Process for Water and Wastewater Treatment, Editor, "Electro-Fenton Process: New Trends and Scale-Up, Hdb Env Chem", Springer, 2017.
  • [9] Yuan S., Li Z., Wang Y., Effective degradation of methylene blue by a novel electrochemically driven process, Electrochemistry Communications, 29, 48-51, 2013.
  • [10] Turkay O., Ersoy Z. G., Barışçı S., Review—The Application of an Electro-Peroxone Process in Water and Wastewater Treatment, Journal of The Electrochemical Society, 164 (6), E94-E102, 2017.
  • [11] Bakheet B., Yuan S., Li Z., Wang H., Zuo J., Komarneni S., Wang Y., Electro-peroxone treatment of Orange II dye wastewater, Water research, 47 (16), 6234-6243, 2013.
  • [12] Li X., Sun S., Zhang X., Liu G., Zheng C. R., Zheng J., Zhang D., Yao H., Combined electro-catazone/electro-peroxone process for rapid and effective Rhodamine B degradation, Separation and Purification Technology, 178, 189-192, 2017.
  • [13] Li X., Wang Y., Yuan S., Li Z., Wang B., Huang J., Deng S., Yu G., Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process, Water research, 63, 81-93, 2014.
  • [14] Guo W., Wu Q.-L., Zhou X.-J., Cao H.-O., Du J.-S., Yin R.-L., Ren N.-Q., Enhanced amoxicillin treatment using the electro-peroxone process: key factors and degradation mechanism, RSC Advances, 5 (65), 52695-52702, 2015.
  • [15] Yao W., Wang X., Yang H., Yu G., Deng S., Huang J., Wang B., Wang Y., Removal of pharmaceuticals from secondary effluents by an electro-peroxone process, Water research, 88, 826-835, 2016.
  • [16] Turkay O., Barışçı S., Sillanpää M., E-peroxone Process for the Treatment of Laundry Wastewater: A Case Study, Journal of Environmental Chemical Engineering, 2017.
  • [17] Li Z., Yuan S., Qiu C., Wang Y., Pan X., Wang J., Wang C., Zuo J., Effective degradation of refractory organic pollutants in landfill leachate by electro-peroxone treatment, Electrochimica Acta, 102, 174-182, 2013.
  • [18] Li Y., Shen W., Fu S., Yang H., Yu G., Wang Y., Inhibition of bromate formation during drinking water treatment by adapting ozonation to electro-peroxone process, Chemical Engineering Journal, 264, 322-328, 2015.
  • [19] Mao Y., Guo D., Yao W., Wang X., Yang H., Xie Y. F., Komarneni S., Yu G., Wang Y., Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination, Water research, 130, 322-332, 2018.
  • [20] Govindaraj M., Muthukumar M., Bhaskar Raju G., Electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2‐coated titanium and graphite anodes, Environmental technology, 31 (14), 1613-1622, 2010.
  • [21] Perkowski J., Dawidow U., Jóźwiak W. K., Advanced Oxidation of Tannic Acid in Aqueous Solution, Ozone: Science & Engineering, 25 (3), 199-209, 2003.
  • [22] Kloster M. B., Determination of tannin and lignin, Journal American Water Works Association, 66 (1), 44, 1974.
  • [23] APHA, Standard methods for the examination of water and wastewater, 19 Edition, 1998.
  • [24] Milan-Segovia N., Wang Y., Cannon F. S., Voigt R. C., Furness J. C., Comparison of hydroxyl radical generation for various advanced oxidation combinations as applied to foundries, Ozone: Science and Engineering, 29 (6), 461-471, 2007.
  • [25] Fischbacher A., von Sonntag J., von Sonntag C., Schmidt T. C., The •OH radical yield in the H2O2+O3 (peroxone) reaction, Environmental science & technology, 47 (17), 9959-9964, 2013.
  • [26] Kim J. K., Metcalfe I. S., Investigation of the generation of hydroxyl radicals and their oxidative role in the presence of heterogeneous copper catalysts, Chemosphere, 69 (5), 689-696, 2007.
  • [27] Andreozzi R., Caprio V., Insola A., Marotta R., Advanced oxidation processes (AOP) for water purification and recovery, Catalysis today, 53 (1), 51-59, 1999.
  • [28] Wang H., Bakheet B., Yuan S., Li X., Yu G., Murayama S., Wang Y., Kinetics and energy efficiency for the degradation of 1, 4-dioxane by electro-peroxone process, Journal of hazardous materials, 294, 90-98, 2015.
  • [29] Wang H., Zhan J., Yao W., Wang B., Deng S., Huang J., Yu G., Wang Y., Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process, Water research, 130, 127-138, 2018.
  • [30] Kerc A., Bekbolet M., Saatci A. M., Sequential oxidation of humic acids by ozonation and photocatalysis, Ozone: Science & Engineering, 25 (6), 497-504, 2003.
  • [31] Xiang Li Y. W., Jian Zhao, Huijiao Wang, Bin Wang, Jun Huang, Shubo Deng, Gang Yu, Gang, Electro-peroxone treatment of the antidepressant venlafaxine: Operational parameters and mechanis, Hazardous Materials, 10, 2015.
There are 31 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Özge Türkay This is me 0000-0002-3029-7840

Publication Date October 25, 2019
Submission Date May 20, 2018
Acceptance Date June 18, 2019
Published in Issue Year 2020 Volume: 35 Issue: 1

Cite

APA Türkay, Ö. (2019). Elektroperokson prosesi ile tannik asit oksidasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 51-60. https://doi.org/10.17341/gazimmfd.425326
AMA Türkay Ö. Elektroperokson prosesi ile tannik asit oksidasyonu. GUMMFD. October 2019;35(1):51-60. doi:10.17341/gazimmfd.425326
Chicago Türkay, Özge. “Elektroperokson Prosesi Ile Tannik Asit Oksidasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no. 1 (October 2019): 51-60. https://doi.org/10.17341/gazimmfd.425326.
EndNote Türkay Ö (October 1, 2019) Elektroperokson prosesi ile tannik asit oksidasyonu. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 1 51–60.
IEEE Ö. Türkay, “Elektroperokson prosesi ile tannik asit oksidasyonu”, GUMMFD, vol. 35, no. 1, pp. 51–60, 2019, doi: 10.17341/gazimmfd.425326.
ISNAD Türkay, Özge. “Elektroperokson Prosesi Ile Tannik Asit Oksidasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/1 (October 2019), 51-60. https://doi.org/10.17341/gazimmfd.425326.
JAMA Türkay Ö. Elektroperokson prosesi ile tannik asit oksidasyonu. GUMMFD. 2019;35:51–60.
MLA Türkay, Özge. “Elektroperokson Prosesi Ile Tannik Asit Oksidasyonu”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 1, 2019, pp. 51-60, doi:10.17341/gazimmfd.425326.
Vancouver Türkay Ö. Elektroperokson prosesi ile tannik asit oksidasyonu. GUMMFD. 2019;35(1):51-60.