Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 35 Sayı: 1, 297 - 310, 25.10.2019
https://doi.org/10.17341/gazimmfd.463280

Öz

Kaynakça

  • [1] Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review, Energ. Environ. Sci., 4 (9), 3243-3262, 2011.
  • [2] Din, E., Schaef, C., Moffat, K., Stauth, J.T., A scalable active battery management system with embedded real-time electrochemical impedance spectroscopy, IEEE T. Power Electr., 32 (7), 5688-5698, 2017.
  • [3] Mulder, G., Omar, N., Pauwels, S., Meeus, M., Leemans, F., Verbrugge, B., De Nijs, W., Van den Bossche, P., Six, D., Van Mierlo, J., Comparison of commercial battery cells in relation to material properties, Electrochim. Acta, 87, 473-488, 2013.
  • [4] Turan, D., Yönetken, A., Enerji depolama sistemlerinin araştırılması ve analizi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16, 113-121, 2016.
  • [5] Zhu, W.H., Y. Zhu, B.J., Tatarchuk, Self-discharge characteristics and performance degradation of Ni-MH batteries for storage applications, Int. J. Hydrogen Energ., 39 (34), 19789-19798, 2014.
  • [6] Morimoto, K., Nagashima, I., Matsui, M., Maki, H., Mizuhata, M., Improvement of electrochemical properties and oxidation/reduction behavior of cobalt in positive electrode of Ni-metal hydride battery, J. Power Sources, 388, 45-51, 2018.
  • [7] Yan, S., Nei, J., Li, P., Young, K.H., Simon Ng, K.Y., Effects of Cs2CO3 additive in KOH electrolyte used in Ni/MH batteries, Batteries, 3 (4), 41, 2017.
  • [8] Tarabay, J., Karami, N., Nickel metal hydride battery: structure, chemical reaction, and circuit model, 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), Beyrut, Lübnan, 22-26, 29 Nisan-1 Mayıs, 2015.
  • [9] Howey, D.A., Mahdi Alavi, S.M., Rechargeable Battery Energy Storage System Design, Handbook of Clean Energy Systems, Cilt 5: Energy Storage, Editör: Yan J., John Wiley & Sons, Hoboken, NJ, A.B.D., 2801-2819, 2015.
  • [10] Muenzel, V., Hollenkamp, A.F., Bhatt, A.I., de Hoog, J., Brazil, M., Thomas, D.A., Mareels, I., A comparative testing study of commercial 18650-format lithium-ion battery cells, J. Electrochem. Soc., 162 (8), A1592-A1600, 2015.
  • [11] Özçelik, E., Özkan, G., Synthesis and characterization of LiCoO2 used as cathode material in secondary lithium batteries, Journal of the Faculty of Engineering and Architecture of Gazi University, 21 (3), 423-425, 2006.
  • [12] Balasundaram, M., M., Ramar, V., Yap, C., Li, L., Tay, A.A., Balaya, P., Heat loss distribution: Impedance and thermal loss analyses in LiFePO4/graphite 18650 electrochemical cell, J. Power Sources, 328, 413-421, 2016.
  • [13] Sarıkurt, T., Balıkçı, A., A novel energy management system for full electric vehicles, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 323-333, 2017.
  • [14] Piłatowicz, G., Marongiu, A., Drillkens, J., Sinhuber, P. and Sauer, D.U., A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples, J. Power Sources, 296, 365-376, 2015.
  • [15] Castano-Solis, S., Serrano-Jimenez, D., Gauchia, L. and Sanz, J. The influence of BMSs on the characterization and modeling of series and parallel Li-ion packs, Energies, 10 (3), 273, 2017.
  • [16] Zhu, Y., Zhu, W.H., Davis, Z., Tatarchuk, B.J., Simulation of Ni-MH batteries via an equivalent circuit model for energy storage applications, Advances in Physical Chemistry, 2016, 4584781, 2016.
  • [17] Robinson, J.B., Darr, J.A., Eastwood, D.S., Hinds, G., Lee, P.D., Shearing, P.R., Taiwo, O.O. and Brett, D.J., Non-uniform temperature distribution in Li-ion batteries during discharge-A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach, J. Power Sources, 252, 51-57, 2014.
  • [18] Galeotti, M., Giammanco, C., Cinà, L., Cordiner, S. and Di Carlo, A., Synthetic methods for the evaluation of the State of Health (SOH) of nickel-metal hydride (NiMH) batteries. Energ. Convers. Manage., 92, 1-9. 2015.
  • [19] Wolff, N., Harting, N., Heinrich, M., Röder, F. and Krewer, U., Nonlinear frequency response analysis on lithium-ion batteries: A model-based assessment, Electrochim. Acta, 260, 614-622, 2018.
  • [20] Barlak, C., Özkazanç, Y., Battery capacity estimation, Journal of the Faculty of Engineering and Architecture of Gazi University, 26 (1), 185-191, 2011.
  • [21] Ferg, E.E., van Vuuren, F., Comparative capacity performance and electrochemical impedance spectroscopy of commercial AA alkaline primary cells, Electrochim. Acta, 128, 203-209. 2014.
  • [22] Yang, Q., Xu, J., Cao, B., Li, X., A simplified fractional order impedance model and parameter identification method for lithium-ion batteries, Plos One, 12 (2), e0172424, 2017.
  • [23] Erol S., Electrochemical impedance spectroscopy analysis and modeling of lithium cobalt oxide/carbon batteries, Doktora Tezi, Florida Üniversitesi, Gainesville, FL, A.B.D., 2015.
  • [24] Orazem M.E., Tribollet B., Electrochemical Impedance Spectroscopy, John Wiley & Sons, Hoboken, NJ, A.B.D., 2017.
  • [25] Pinson, M.B., Bazant, M.Z., Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction, J. Electrochem.Soc., 160 (2), A243-A250, 2013.
  • [26] Erol, S., Orazem, M.E., The influence of anomalous diffusion on the impedance response of LiCoO2|C batteries, J. Power Sources, 293, 57-64, 2015.
  • [27] Alexander, C.L., Tribollet, B., Orazem, M.E., Contribution of surface distributions to constant-phase-element (CPE) behavior: 1. Influence of roughness, Electrochim. Acta, 173, 416-424. 2015.
  • [28] Bisquert J., Compte, A., Theory of the electrochemical impedance of anomalous diffusion, J. Electroanal. Chem., 499, 112-120, 2001.
  • [29] Osaka, T., Mukoyama, D., Nara, H., Review—Development of diagnostic process for commercially available batteries, especially lithium ion battery, by electrochemical impedance spectroscopy, J. Electrochem.Soc., 162 (14), A2529-A2537, 2015.
  • [30] Lvovich, V.F., Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena, John Wiley & Sons, Hoboken, NJ, A.B.D., 2012.
  • [31] Bisquert, J., Influence of the boundaries in the impedance of porous film electrodes, Phys. Chem. Chem. Phys., 2 (18), 4185-4192, 2000.

18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi

Yıl 2020, Cilt: 35 Sayı: 1, 297 - 310, 25.10.2019
https://doi.org/10.17341/gazimmfd.463280

Öz

Bu çalışmada ikincil piller arasında yaygın olarak kullanılan ticari
18650 lityum-iyon ve 6HR61 nikel-metal hidrit pillerinin aynı hücre
potansiyeli, sabit sıcaklık ve frekans aralığındaki elektrokimyasal empedans
analizi gerçekleştirilmiştir. Bu iki tekrar şarj edilebilir pilin empedans
cevapları ve geliştirilen eşdeğer devre modeli ile pillerin önemli fiziksel
parametreleri saptanmıştır. Elde edilen parametreler ile pillerin enerji
depolama sistemlerinde tercih edilebilirliğini önemli ölçüde belirleyen
performans ve kapasite özellikleri kıyaslanmıştır. Bunun sonucunda, lityum-iyon
pilinin nikel-metal hidrit piline göre birçok üstün özelliğe sahip olduğu
belirlenmiştir. Ayrıca, kullanılan elektrokimyasal empedans spektroskopi
tekniği ile geliştirilen modelin, enerji ihtiyacının karşılanması ve gelecekte
üretilecek pillerin tasarımı için etkili olabileceği ve büyük bir potansiyele
sahip olduğu ortaya konmuştur. 

Kaynakça

  • [1] Etacheri, V., Marom, R., Elazari, R., Salitra, G., Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review, Energ. Environ. Sci., 4 (9), 3243-3262, 2011.
  • [2] Din, E., Schaef, C., Moffat, K., Stauth, J.T., A scalable active battery management system with embedded real-time electrochemical impedance spectroscopy, IEEE T. Power Electr., 32 (7), 5688-5698, 2017.
  • [3] Mulder, G., Omar, N., Pauwels, S., Meeus, M., Leemans, F., Verbrugge, B., De Nijs, W., Van den Bossche, P., Six, D., Van Mierlo, J., Comparison of commercial battery cells in relation to material properties, Electrochim. Acta, 87, 473-488, 2013.
  • [4] Turan, D., Yönetken, A., Enerji depolama sistemlerinin araştırılması ve analizi, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16, 113-121, 2016.
  • [5] Zhu, W.H., Y. Zhu, B.J., Tatarchuk, Self-discharge characteristics and performance degradation of Ni-MH batteries for storage applications, Int. J. Hydrogen Energ., 39 (34), 19789-19798, 2014.
  • [6] Morimoto, K., Nagashima, I., Matsui, M., Maki, H., Mizuhata, M., Improvement of electrochemical properties and oxidation/reduction behavior of cobalt in positive electrode of Ni-metal hydride battery, J. Power Sources, 388, 45-51, 2018.
  • [7] Yan, S., Nei, J., Li, P., Young, K.H., Simon Ng, K.Y., Effects of Cs2CO3 additive in KOH electrolyte used in Ni/MH batteries, Batteries, 3 (4), 41, 2017.
  • [8] Tarabay, J., Karami, N., Nickel metal hydride battery: structure, chemical reaction, and circuit model, 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), Beyrut, Lübnan, 22-26, 29 Nisan-1 Mayıs, 2015.
  • [9] Howey, D.A., Mahdi Alavi, S.M., Rechargeable Battery Energy Storage System Design, Handbook of Clean Energy Systems, Cilt 5: Energy Storage, Editör: Yan J., John Wiley & Sons, Hoboken, NJ, A.B.D., 2801-2819, 2015.
  • [10] Muenzel, V., Hollenkamp, A.F., Bhatt, A.I., de Hoog, J., Brazil, M., Thomas, D.A., Mareels, I., A comparative testing study of commercial 18650-format lithium-ion battery cells, J. Electrochem. Soc., 162 (8), A1592-A1600, 2015.
  • [11] Özçelik, E., Özkan, G., Synthesis and characterization of LiCoO2 used as cathode material in secondary lithium batteries, Journal of the Faculty of Engineering and Architecture of Gazi University, 21 (3), 423-425, 2006.
  • [12] Balasundaram, M., M., Ramar, V., Yap, C., Li, L., Tay, A.A., Balaya, P., Heat loss distribution: Impedance and thermal loss analyses in LiFePO4/graphite 18650 electrochemical cell, J. Power Sources, 328, 413-421, 2016.
  • [13] Sarıkurt, T., Balıkçı, A., A novel energy management system for full electric vehicles, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 323-333, 2017.
  • [14] Piłatowicz, G., Marongiu, A., Drillkens, J., Sinhuber, P. and Sauer, D.U., A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples, J. Power Sources, 296, 365-376, 2015.
  • [15] Castano-Solis, S., Serrano-Jimenez, D., Gauchia, L. and Sanz, J. The influence of BMSs on the characterization and modeling of series and parallel Li-ion packs, Energies, 10 (3), 273, 2017.
  • [16] Zhu, Y., Zhu, W.H., Davis, Z., Tatarchuk, B.J., Simulation of Ni-MH batteries via an equivalent circuit model for energy storage applications, Advances in Physical Chemistry, 2016, 4584781, 2016.
  • [17] Robinson, J.B., Darr, J.A., Eastwood, D.S., Hinds, G., Lee, P.D., Shearing, P.R., Taiwo, O.O. and Brett, D.J., Non-uniform temperature distribution in Li-ion batteries during discharge-A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach, J. Power Sources, 252, 51-57, 2014.
  • [18] Galeotti, M., Giammanco, C., Cinà, L., Cordiner, S. and Di Carlo, A., Synthetic methods for the evaluation of the State of Health (SOH) of nickel-metal hydride (NiMH) batteries. Energ. Convers. Manage., 92, 1-9. 2015.
  • [19] Wolff, N., Harting, N., Heinrich, M., Röder, F. and Krewer, U., Nonlinear frequency response analysis on lithium-ion batteries: A model-based assessment, Electrochim. Acta, 260, 614-622, 2018.
  • [20] Barlak, C., Özkazanç, Y., Battery capacity estimation, Journal of the Faculty of Engineering and Architecture of Gazi University, 26 (1), 185-191, 2011.
  • [21] Ferg, E.E., van Vuuren, F., Comparative capacity performance and electrochemical impedance spectroscopy of commercial AA alkaline primary cells, Electrochim. Acta, 128, 203-209. 2014.
  • [22] Yang, Q., Xu, J., Cao, B., Li, X., A simplified fractional order impedance model and parameter identification method for lithium-ion batteries, Plos One, 12 (2), e0172424, 2017.
  • [23] Erol S., Electrochemical impedance spectroscopy analysis and modeling of lithium cobalt oxide/carbon batteries, Doktora Tezi, Florida Üniversitesi, Gainesville, FL, A.B.D., 2015.
  • [24] Orazem M.E., Tribollet B., Electrochemical Impedance Spectroscopy, John Wiley & Sons, Hoboken, NJ, A.B.D., 2017.
  • [25] Pinson, M.B., Bazant, M.Z., Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction, J. Electrochem.Soc., 160 (2), A243-A250, 2013.
  • [26] Erol, S., Orazem, M.E., The influence of anomalous diffusion on the impedance response of LiCoO2|C batteries, J. Power Sources, 293, 57-64, 2015.
  • [27] Alexander, C.L., Tribollet, B., Orazem, M.E., Contribution of surface distributions to constant-phase-element (CPE) behavior: 1. Influence of roughness, Electrochim. Acta, 173, 416-424. 2015.
  • [28] Bisquert J., Compte, A., Theory of the electrochemical impedance of anomalous diffusion, J. Electroanal. Chem., 499, 112-120, 2001.
  • [29] Osaka, T., Mukoyama, D., Nara, H., Review—Development of diagnostic process for commercially available batteries, especially lithium ion battery, by electrochemical impedance spectroscopy, J. Electrochem.Soc., 162 (14), A2529-A2537, 2015.
  • [30] Lvovich, V.F., Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena, John Wiley & Sons, Hoboken, NJ, A.B.D., 2012.
  • [31] Bisquert, J., Influence of the boundaries in the impedance of porous film electrodes, Phys. Chem. Chem. Phys., 2 (18), 4185-4192, 2000.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Uğur Moralı 0000-0001-7794-6943

Salim Erol 0000-0002-7219-6642

Yayımlanma Tarihi 25 Ekim 2019
Gönderilme Tarihi 24 Eylül 2018
Kabul Tarihi 10 Mart 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 1

Kaynak Göster

APA Moralı, U., & Erol, S. (2019). 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 297-310. https://doi.org/10.17341/gazimmfd.463280
AMA Moralı U, Erol S. 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. GUMMFD. Ekim 2019;35(1):297-310. doi:10.17341/gazimmfd.463280
Chicago Moralı, Uğur, ve Salim Erol. “18650 Lityum-Iyon Ve 6HR61 Nikel-Metal Hidrit Tekrar şarj Edilebilir Pillerinin Elektrokimyasal Empedans Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 1 (Ekim 2019): 297-310. https://doi.org/10.17341/gazimmfd.463280.
EndNote Moralı U, Erol S (01 Ekim 2019) 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 1 297–310.
IEEE U. Moralı ve S. Erol, “18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi”, GUMMFD, c. 35, sy. 1, ss. 297–310, 2019, doi: 10.17341/gazimmfd.463280.
ISNAD Moralı, Uğur - Erol, Salim. “18650 Lityum-Iyon Ve 6HR61 Nikel-Metal Hidrit Tekrar şarj Edilebilir Pillerinin Elektrokimyasal Empedans Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/1 (Ekim 2019), 297-310. https://doi.org/10.17341/gazimmfd.463280.
JAMA Moralı U, Erol S. 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. GUMMFD. 2019;35:297–310.
MLA Moralı, Uğur ve Salim Erol. “18650 Lityum-Iyon Ve 6HR61 Nikel-Metal Hidrit Tekrar şarj Edilebilir Pillerinin Elektrokimyasal Empedans Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 1, 2019, ss. 297-10, doi:10.17341/gazimmfd.463280.
Vancouver Moralı U, Erol S. 18650 lityum-iyon ve 6HR61 nikel-metal hidrit tekrar şarj edilebilir pillerinin elektrokimyasal empedans analizi. GUMMFD. 2019;35(1):297-310.