Research Article
BibTex RIS Cite

Oluklu alüminyum sandviç panellerde kor yüksekliğinin enerji sönümleme kapasitesine olan etkisi

Year 2020, Volume: 35 Issue: 1, 17 - 26, 25.10.2019
https://doi.org/10.17341/gazimmfd.639834

Abstract

Bu
çalışmada, sert lehim ve poliüretan ile birleştirilmiş oluklu kora sahip
alüminyum sandviç yapıların enerji sönümleme kapasiteleri incelenmiştir.
Sandviç yapılarda kor olarak yamuk ikizkenar şeklinde zikzak 1050 H14 Al
alaşımından yapılmış olan oluklu katmanlar ile yüz ve ara plakalar
kullanılmıştır. Her bir sandviç panel, 0°/0° veya 0°/90° kor oryantasyonuna
sahiptir. Çalışmada kullanılan oluklu korlar geleneksel oluklu korlara kıyasla
daha küçüktür ve 3 mm yüksekliğe sahiptir. Darbe testleri 3 ve 6 m/s hızlarında
küresel projektörler ile gerçekleştirilmiştir. Poliüretan ile birleştirilmiş sandviç
yapıların bir kısmı ayrıca 6 m/s darbe hızında düz ve konik projektörler ile
test edilmiştir. Oluklu korların deformasyon tipinin belirlenmesi amacıyla
deneyin nümerik simülasyonu LS-DYNA programı ile oluşturulmuştur. Düz ve konik
projektörler ile test edilen paneller tamamen delinmiştir ve 0°/0° kor
oryantasyonunda daha çok enerji sönümlemiştir. Küresel projektörler ile test
edilen paneller ise delinmemiştir ve enerji sönümleme değerleri 0°/90° kor
oryantasyonunda daha yüksektir. Panellerin enerji sönümleme kapasiteleri aynı
şekle sahip ancak 9 mm yüksekliğindeki oluklu korlu sandviç paneller ile
karşılaştırılmıştır. Çalışma sonunda kor yüksekliğinin artması ile efektif
ezilme uzunluğunun arttığı ve darbe enerjisinin panele daha homojen olarak
dağıtıldığı görülmüştür
.

References

  • 1. Wang, S.L., Ding, Y.Y., Wang, C.F., Zheng, Z.J., Yu, J.L., 2017. Dynamic material parameters of closed-cell foams under high-velocity impact, International Journal of Impact Engineering, 99, 111-121.
  • 2. Pang, X., Du, H.J., 2017. Dynamic characteristics of aluminium foams under impact crushing, Compos. Pt. B-Eng., 112, 265-277.
  • 3. Zhang, P., Cheng, Y.S., Liu, J., Li, Y., Zhang, C.Z., Hou, H.L., Wang, C.M., 2016. Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading, Compos. Pt. B-Eng., 105, 67-81.
  • 4. Zhang, B.Y., Lin, Y.F., Li, S., Zhai, D.X., Wu, G.H., 2016. Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams, Compos. Pt. B-Eng., 98, 288-296.
  • 5. Sadot, O., Ram, O., Anteby, I., Gruntman, S., Ben-Dor, G., 2016. The trapped gas effect on the dynamic compressive strength of light aluminum foams, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 659, 278-286.
  • 6. Liu, H., Zhang, Z.Q., Liu, H., Yang, J.L., 2016. Effect of elastic target on Taylor-Hopkinson impact of low-density foam material, International Journal of Impact Engineering, 94, 109-119.
  • 7. Dou, R.J., Qiu, S.W., Ju, Y., Hu, Y.B., 2016. Simulation of compression behavior and strain-rate effect for aluminum foam sandwich panels, Comput. Mater. Sci., 112, 205-209.
  • 8. Zhang, D.H., Fei, Q.G., Zhang, P.W., 2017. In-plane dynamic crushing behavior and energy absorption of honeycombs with a novel type of multi-cells, Thin-Walled Structures, 117, 199-210.
  • 9. Keshavanarayana, S.R., Shahverdi, H., Kothare, A., Yang, C., Bingenheimer, J., 2017. The effect of node bond adhesive fillet on uniaxial in-plane responses of hexagonal honeycomb core, Composite Structures, 175, 111-122.
  • 10. Qiao, J.X., Chen, C.Q., 2016. In-plane crushing of a hierarchical honeycomb, International Journal of Solids and Structures, 85-86, 57-66.
  • 11. Tao, Y., Chen, M.J., Chen, H.S., Pei, Y.M., Fang, D.N., 2015. Strain rate effect on the out-of-plane dynamic compressive behavior of metallic honeycombs: Experiment and theory, Composite Structures, 132, 644-651.
  • 12. Bai, Z.Y., Wang, D.M., Xu, Z.F., 2015. Model creation of strain rate-dependent energy absorption for paper honeycomb sandwich structure, Journal of Sandwich Structures & Materials, 17, 359-375.
  • 13. Aktay, L., Johnson, A., Kroplin, B., 2008. Numerical modelling of honeycomb core crush behaviour, Engineering Fracture Mechanics, 75, 2616-2630.
  • 14. Radford, D.D., Fleck, N.A., Deshpande, V.S., 2006. The response of clamped sandwich beams subjected to shock loading, International Journal of Impact Engineering, 32, 968-987.
  • 15. Liang, C.-C., Yang, M.-F., Wu, P.-W., 2001. Optimum design of metallic corrugated core sandwich panels subjected to blast loads, Ocean Engineering, 28, 825-861.
  • 16. Tilbrook, M.T., Radford, D.D., Deshpande, V.S., Fleck, N.A., 2007. Dynamic crushing of sandwich panels with prismatic lattice cores, International Journal of Solids and Structures, 44, 6101-6123.
  • 17. Liang, Y., Louca, L., Hobbs, R., 2007. Corrugated panels under dynamic loads, International Journal of Impact Engineering, 34, 1185-1201.
  • 18. Zhang, Y.C., Zhang, S.L., Wang, Z.L., 2011. Crush Behavior of Corrugated Cores Sandwich Panels, Advanced Materials Research, 217-218, 1584-1589.
  • 19. Cote, F., Deshpande, V., Fleck, N., Evans, A.G., 2006. The compressive and shear reponses of corrugated and diamond lattice materials, International Journal of Solids and Structures, 43, 6220-6242.
  • 20. Rubino, V., Deshpande, V., Fleck, N., 2008. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core, International Journal of Impact Engineering, 35, 829-844.
  • 21. Rubino, V., Deshpande, V.S., Fleck, N.A., 2009. The dynamic response of clamped rectangular Y-frame and corrugated core sandwich plates, European Journal of Mechanics - A/Solids, 28, 14-24.
  • 22. Wadley, H.N.G., 2006. Multifunctional periodic cellular metals, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 364, 31-68.
  • 23. Zhang, Y.C., Zhang, S.L., Wang, Z.L., Crush Behavior of Corrugated Cores Sandwich Panels, in: M. Zhou (Ed.) High Performance Structures and Materials Engineering, Pts 1 and 2, Trans Tech Publications Ltd, Stafa-Zurich, 2011, pp. 1584-1589.
  • 24. Hou, S., Zhao, S., Ren, L., Han, X., Li, Q., 2013. Crashworthiness optimization of corrugated sandwich panels, Materials & Design, 51, 1071-1084.
  • 25. Rejab, M.R.M., Cantwell, W.J., 2013. The mechanical behaviour of corrugated-core sandwich panels, Composites Part B: Engineering, 47, 267-277.
  • 26. Sun, Y.L., Li, Q.M., 2018. Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling, International Journal of Impact Engineering, 112, 74-115.
  • 27. Cao, B.T., Hou, B., Zhao, H., Li, Y.L., Liu, J.G., 2018. On the influence of the property gradient on the impact behavior of graded multilayer sandwich with corrugated cores, International Journal of Impact Engineering, 113, 98-105.
  • 28. Cao, B.T., Hou, B., Li, Y.L., Zhao, H., 2017. An experimental study on the impact behavior of multilayer sandwich with corrugated cores, International Journal of Solids and Structures, 109, 33-45.
  • 29. Sankaya, M., Tasdemirci, A., Guden, M., 2018. Dynamic crushing behavior of a multilayer thin-walled aluminum corrugated core: The effect of velocity and imperfection, Thin-Walled Structures, 132, 332-349.
  • 30. Odac, I.K., Guden, M., Klcaslan, C., Tasdemirci, A., 2017. The varying densification strain in a multi-layer aluminum corrugate structure: Direct impact testing and layer-wise numerical modelling, International Journal of Impact Engineering, 103, 64-75.
  • 31. Kılıçaslan, C., Odacı, İ.K., Güden, M., 2016. Single- and double-layer aluminum corrugated core sandwiches under quasi-static and dynamic loadings, 18, 667-692.
  • 32. Liu, T., Turner, P., 2017. Dynamic compressive response of wrapped carbon fibre composite corrugated cores, Composite Structures, 165, 266-272.
  • 33. Huang, W., Zhang, W., Ye, N., Li, D.C., Dynamic response of clamped corrugated sandwich plates subjected to underwater impulsive loads, in: R. Chau, T. Germann, I. Oleynik, S. Peiris, R. Ravelo, T. Sewell (Eds.) Shock Compression of Condensed Matter - 2015, Amer Inst Physics, Melville, 2017.
  • 34. Huang, W., Zhang, W., Huang, X.L., Jiang, X.W., Li, Y., Zhang, L., 2017. Dynamic response of aluminum corrugated sandwich subjected to underwater impulsive loading: Experiment and numerical modeling, International Journal of Impact Engineering, 109, 78-91.
  • 35. Kılıçaslan, C., Güden, M., Odacı, İ.K., Taşdemirci, A., 2013. The impact responses and the finite element modeling of layered trapezoidal corrugated aluminum core and aluminum sheet interlayer sandwich structures, Materials & Design, 46, 121-133.
Year 2020, Volume: 35 Issue: 1, 17 - 26, 25.10.2019
https://doi.org/10.17341/gazimmfd.639834

Abstract

References

  • 1. Wang, S.L., Ding, Y.Y., Wang, C.F., Zheng, Z.J., Yu, J.L., 2017. Dynamic material parameters of closed-cell foams under high-velocity impact, International Journal of Impact Engineering, 99, 111-121.
  • 2. Pang, X., Du, H.J., 2017. Dynamic characteristics of aluminium foams under impact crushing, Compos. Pt. B-Eng., 112, 265-277.
  • 3. Zhang, P., Cheng, Y.S., Liu, J., Li, Y., Zhang, C.Z., Hou, H.L., Wang, C.M., 2016. Experimental study on the dynamic response of foam-filled corrugated core sandwich panels subjected to air blast loading, Compos. Pt. B-Eng., 105, 67-81.
  • 4. Zhang, B.Y., Lin, Y.F., Li, S., Zhai, D.X., Wu, G.H., 2016. Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams, Compos. Pt. B-Eng., 98, 288-296.
  • 5. Sadot, O., Ram, O., Anteby, I., Gruntman, S., Ben-Dor, G., 2016. The trapped gas effect on the dynamic compressive strength of light aluminum foams, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 659, 278-286.
  • 6. Liu, H., Zhang, Z.Q., Liu, H., Yang, J.L., 2016. Effect of elastic target on Taylor-Hopkinson impact of low-density foam material, International Journal of Impact Engineering, 94, 109-119.
  • 7. Dou, R.J., Qiu, S.W., Ju, Y., Hu, Y.B., 2016. Simulation of compression behavior and strain-rate effect for aluminum foam sandwich panels, Comput. Mater. Sci., 112, 205-209.
  • 8. Zhang, D.H., Fei, Q.G., Zhang, P.W., 2017. In-plane dynamic crushing behavior and energy absorption of honeycombs with a novel type of multi-cells, Thin-Walled Structures, 117, 199-210.
  • 9. Keshavanarayana, S.R., Shahverdi, H., Kothare, A., Yang, C., Bingenheimer, J., 2017. The effect of node bond adhesive fillet on uniaxial in-plane responses of hexagonal honeycomb core, Composite Structures, 175, 111-122.
  • 10. Qiao, J.X., Chen, C.Q., 2016. In-plane crushing of a hierarchical honeycomb, International Journal of Solids and Structures, 85-86, 57-66.
  • 11. Tao, Y., Chen, M.J., Chen, H.S., Pei, Y.M., Fang, D.N., 2015. Strain rate effect on the out-of-plane dynamic compressive behavior of metallic honeycombs: Experiment and theory, Composite Structures, 132, 644-651.
  • 12. Bai, Z.Y., Wang, D.M., Xu, Z.F., 2015. Model creation of strain rate-dependent energy absorption for paper honeycomb sandwich structure, Journal of Sandwich Structures & Materials, 17, 359-375.
  • 13. Aktay, L., Johnson, A., Kroplin, B., 2008. Numerical modelling of honeycomb core crush behaviour, Engineering Fracture Mechanics, 75, 2616-2630.
  • 14. Radford, D.D., Fleck, N.A., Deshpande, V.S., 2006. The response of clamped sandwich beams subjected to shock loading, International Journal of Impact Engineering, 32, 968-987.
  • 15. Liang, C.-C., Yang, M.-F., Wu, P.-W., 2001. Optimum design of metallic corrugated core sandwich panels subjected to blast loads, Ocean Engineering, 28, 825-861.
  • 16. Tilbrook, M.T., Radford, D.D., Deshpande, V.S., Fleck, N.A., 2007. Dynamic crushing of sandwich panels with prismatic lattice cores, International Journal of Solids and Structures, 44, 6101-6123.
  • 17. Liang, Y., Louca, L., Hobbs, R., 2007. Corrugated panels under dynamic loads, International Journal of Impact Engineering, 34, 1185-1201.
  • 18. Zhang, Y.C., Zhang, S.L., Wang, Z.L., 2011. Crush Behavior of Corrugated Cores Sandwich Panels, Advanced Materials Research, 217-218, 1584-1589.
  • 19. Cote, F., Deshpande, V., Fleck, N., Evans, A.G., 2006. The compressive and shear reponses of corrugated and diamond lattice materials, International Journal of Solids and Structures, 43, 6220-6242.
  • 20. Rubino, V., Deshpande, V., Fleck, N., 2008. The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core, International Journal of Impact Engineering, 35, 829-844.
  • 21. Rubino, V., Deshpande, V.S., Fleck, N.A., 2009. The dynamic response of clamped rectangular Y-frame and corrugated core sandwich plates, European Journal of Mechanics - A/Solids, 28, 14-24.
  • 22. Wadley, H.N.G., 2006. Multifunctional periodic cellular metals, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 364, 31-68.
  • 23. Zhang, Y.C., Zhang, S.L., Wang, Z.L., Crush Behavior of Corrugated Cores Sandwich Panels, in: M. Zhou (Ed.) High Performance Structures and Materials Engineering, Pts 1 and 2, Trans Tech Publications Ltd, Stafa-Zurich, 2011, pp. 1584-1589.
  • 24. Hou, S., Zhao, S., Ren, L., Han, X., Li, Q., 2013. Crashworthiness optimization of corrugated sandwich panels, Materials & Design, 51, 1071-1084.
  • 25. Rejab, M.R.M., Cantwell, W.J., 2013. The mechanical behaviour of corrugated-core sandwich panels, Composites Part B: Engineering, 47, 267-277.
  • 26. Sun, Y.L., Li, Q.M., 2018. Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling, International Journal of Impact Engineering, 112, 74-115.
  • 27. Cao, B.T., Hou, B., Zhao, H., Li, Y.L., Liu, J.G., 2018. On the influence of the property gradient on the impact behavior of graded multilayer sandwich with corrugated cores, International Journal of Impact Engineering, 113, 98-105.
  • 28. Cao, B.T., Hou, B., Li, Y.L., Zhao, H., 2017. An experimental study on the impact behavior of multilayer sandwich with corrugated cores, International Journal of Solids and Structures, 109, 33-45.
  • 29. Sankaya, M., Tasdemirci, A., Guden, M., 2018. Dynamic crushing behavior of a multilayer thin-walled aluminum corrugated core: The effect of velocity and imperfection, Thin-Walled Structures, 132, 332-349.
  • 30. Odac, I.K., Guden, M., Klcaslan, C., Tasdemirci, A., 2017. The varying densification strain in a multi-layer aluminum corrugate structure: Direct impact testing and layer-wise numerical modelling, International Journal of Impact Engineering, 103, 64-75.
  • 31. Kılıçaslan, C., Odacı, İ.K., Güden, M., 2016. Single- and double-layer aluminum corrugated core sandwiches under quasi-static and dynamic loadings, 18, 667-692.
  • 32. Liu, T., Turner, P., 2017. Dynamic compressive response of wrapped carbon fibre composite corrugated cores, Composite Structures, 165, 266-272.
  • 33. Huang, W., Zhang, W., Ye, N., Li, D.C., Dynamic response of clamped corrugated sandwich plates subjected to underwater impulsive loads, in: R. Chau, T. Germann, I. Oleynik, S. Peiris, R. Ravelo, T. Sewell (Eds.) Shock Compression of Condensed Matter - 2015, Amer Inst Physics, Melville, 2017.
  • 34. Huang, W., Zhang, W., Huang, X.L., Jiang, X.W., Li, Y., Zhang, L., 2017. Dynamic response of aluminum corrugated sandwich subjected to underwater impulsive loading: Experiment and numerical modeling, International Journal of Impact Engineering, 109, 78-91.
  • 35. Kılıçaslan, C., Güden, M., Odacı, İ.K., Taşdemirci, A., 2013. The impact responses and the finite element modeling of layered trapezoidal corrugated aluminum core and aluminum sheet interlayer sandwich structures, Materials & Design, 46, 121-133.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Cenk Kılıçaslan 0000-0002-5787-9891

Musatafa Güden 0000-0001-6397-8418

Publication Date October 25, 2019
Submission Date September 5, 17
Acceptance Date August 8, 19
Published in Issue Year 2020 Volume: 35 Issue: 1

Cite

APA Kılıçaslan, C., & Güden, M. (2019). Oluklu alüminyum sandviç panellerde kor yüksekliğinin enerji sönümleme kapasitesine olan etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(1), 17-26. https://doi.org/10.17341/gazimmfd.639834
AMA Kılıçaslan C, Güden M. Oluklu alüminyum sandviç panellerde kor yüksekliğinin enerji sönümleme kapasitesine olan etkisi. GUMMFD. October 2019;35(1):17-26. doi:10.17341/gazimmfd.639834
Chicago Kılıçaslan, Cenk, and Musatafa Güden. “Oluklu alüminyum Sandviç Panellerde Kor yüksekliğinin Enerji sönümleme Kapasitesine Olan Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no. 1 (October 2019): 17-26. https://doi.org/10.17341/gazimmfd.639834.
EndNote Kılıçaslan C, Güden M (October 1, 2019) Oluklu alüminyum sandviç panellerde kor yüksekliğinin enerji sönümleme kapasitesine olan etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 1 17–26.
IEEE C. Kılıçaslan and M. Güden, “Oluklu alüminyum sandviç panellerde kor yüksekliğinin enerji sönümleme kapasitesine olan etkisi”, GUMMFD, vol. 35, no. 1, pp. 17–26, 2019, doi: 10.17341/gazimmfd.639834.
ISNAD Kılıçaslan, Cenk - Güden, Musatafa. “Oluklu alüminyum Sandviç Panellerde Kor yüksekliğinin Enerji sönümleme Kapasitesine Olan Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/1 (October 2019), 17-26. https://doi.org/10.17341/gazimmfd.639834.
JAMA Kılıçaslan C, Güden M. Oluklu alüminyum sandviç panellerde kor yüksekliğinin enerji sönümleme kapasitesine olan etkisi. GUMMFD. 2019;35:17–26.
MLA Kılıçaslan, Cenk and Musatafa Güden. “Oluklu alüminyum Sandviç Panellerde Kor yüksekliğinin Enerji sönümleme Kapasitesine Olan Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 1, 2019, pp. 17-26, doi:10.17341/gazimmfd.639834.
Vancouver Kılıçaslan C, Güden M. Oluklu alüminyum sandviç panellerde kor yüksekliğinin enerji sönümleme kapasitesine olan etkisi. GUMMFD. 2019;35(1):17-26.