Research Article
BibTex RIS Cite

Vulnerability assesment of Southwestern Black Sea

Year 2020, Volume: 35 Issue: 2, 663 - 682, 25.12.2019
https://doi.org/10.17341/gazimmfd.504954

Abstract

Climate change-driven impacts such as variation in
storminess and sea level rise are affecting coastal areas directly. Determination
of coastal vulnerability regarding these effects is very important for planning
purposes. In this study, coastal vulnerability of South-Western Black Sea is
examined. Physical and social properties of the area have been considered for
this purpose. Variables effecting the vulnerability determined as:
geomorphology, coastal slope, shoreline change, wave height, mean beach width,
sea level rise, population density and land use. Coastal Vulnerability Index
(CVI) is used to produce vulnerability map of the study area. Results revealed
that highly vulnerable areas are Kıyıköy, Yalıköy, Karaburun, Kilyos, Riva,
Sahilköy, Şile, Ağva and Kefken. The least vulnerable areas are located on the
coasts lying between Ereğli-Zonguldak.

References

  • 1. IPCC, Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment, Cambridge University Pres, New York, A.B.D., 2007.
  • 2. IPCC, Climate Change 2013: The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Pres, New York, A.B.D., 2013.
  • 3. Abuodha P. ve Woodroffe C., International Assessments of the Vulnerability of the Coastal Zone to Climate Change Including an Australian Perspective, University of Wollongong, New South Wales, Avustralya, 2006.
  • 4. Bevacqua A., Yu D. ve Zhang Y., Coastal vulnerability: Evolving concepts in understanding vulnerable people and places, Environmental Science and Policy, 82, 19-29, 2018.
  • 5. IPCC, Climate Change 2001: Impacts, Adaptation and Vulnerability Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Pres, New York, A.B.D., 2001.
  • 6. Gornitz V., Daniels R., White T. ve Birdwell K., The Development of a Coastal Risk Assessment Database: Vulnerability to Sea-Level Rise in the U.S. Southeast, Journal of Coastal Research, Özel sayı no 12, 327-338, 1994.
  • 7. Thieler E. ve Hammar-Klose E., National Assessment of Coastal Vulnerability to Future Sea Level Rise: Preliminary Results for the U.S. Atlantic Coast, A.B.D. Jeolojik Araştırmalar Kurumu, 1999.
  • 8. Tragaki A., Gallousi C. ve Karymbalis E., Coastal Hazard Vulnerability Assessment Based on Geomorphic, Oceanographic and Demographic Parameters: The Case of the Peloponnese (Southern Greece), Land, 7(2), 1-16, 2018.
  • 9. Kantamaneni K., Phillips M., Thomas T. ve Jenkins R., Assessing coastal vulnerability: Development of a combined physical and economic index, Ocean & Coastal Management, 158, 164-175, 2018.
  • 10. Mani Murali R., Ankita M., Amrita S. ve Vethamony P., Coastal Vulnerability Assessment of Puducherry Coast India Using the Analytical Hierarchical Process, Natural Hazards and Earth System Science, 13, 3291-3311, 2013.
  • 11. Chang H.K., Liou J.C. ve Chen W.W., Protection Priority in the Coastal Environment Using a Hybrid AHP-TOPSIS Method on the Miaoli Coast, Taiwan, Journal of Coastal Research, 28(2), 369-374, 2012.
  • 12. Trifonova E. ve Eftimova P., Vulnerability of Varna central beach to extreme storm events, Journal of Environmental Protection and Ecology, 11, 1357-1365, 2010.
  • 13. Valchev N., Andreeva N., Eftimova P., Prodanov B. ve Kotsev I., Assessment of vulnerability to storm induced flood hazard along diverse coastline settings, FLOODrisk 2016 - 3rd European Conference on Flood Risk Management, Lyon-Fransa, 17-21 Ekim, 2016.
  • 14. Allenbach K., Garonna I., Herold C., Monioudi I., Giuliani G., Lehmann A. ve Velegrikas A., Black Sea beaches vulnerability to sea level rise, Environmental Science & Policy, 46, 95-109, 2015.
  • 15. Binita K., Shepherd J. ve Gaither C., Climate change vulnerability assessment in Georgia, Applied Geography, 62, 62-74, 2015.
  • 16. Vlasceanu E., Niculescu D., Petrisoaia S., Spinu A., Mateescu R., Lungu M.L., Vasilache A., Vlasceanu R. ve Memet E., Romanian Shore Vulnerability Due to Storm Induced Erosion Within The Last Decades, Journal of Environmental Protection and Ecology, 4(16), 1478-1486, 2015.
  • 17. Yüksel Y., Tan İ., Ayat B., Anıl Arı G., Aydoğan B. ve Şeker D., A Coastal Management Case Study in Karasu at Black Sea Region, Proceedings of the Twenty-third (2013) International Offshore and Polar Engineering, Alaska - Amerika Birleşik Devletleri, 1244-1250, 30 Haziran-5 Temmuz, 2013.
  • 18. Maktav D., Sunar Erbek F., ve Kabdasli S., Monitoring coastal erosion at the Black Sea coasts in Turkey using satellite data: A case study at the Lake Terkos, north-west Istanbul, International Journal of Remote Sensing, 23(19), 4115-4124, 2002.
  • 19. Aydoğan B., Ayat B. ve Yüksel Y., Black Sea wave energy atlas from 13 years hindcasted wave data, Renewable Energy, 57, 436-447, 2013.
  • 20. Görmüş T., Güney Batı Karadeniz Kıyılarının Deniz Seviyesi Yükselmelerine Karşı Kırılganlığının Belirlenmesi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2017.
  • 21. Devlet Su İşleri, Akarsu Gözlem Yıllığı 2005-2012, Ankara, Türkiye.
  • 22. Medvedev I. P., Tides in the Black Sea: Observations and Numerical Modelling, Pure Appl. Geophys., 175, 6, 1951-1969, 2018.
  • 23. Aydoğan B., Ayat B., Yüksel Y. Analysis and Modelling of Water Level Changes in Bosphorus Entrance of the Black Sea. Water 2010 Conference, Quebec City, Canada, 5-7 July, 2010, Conference Proceedings, in CD.
  • 24. Abuodha P. ve Woodroffe C., Assessing vulnerability to sea-level rise using a coastal sensitivity index: a case study from southeast Australia, J Coast Conserv, 14, 189-205, 2010.
  • 25. NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team, ASTER Global Digital Elevation Model V002, https://lpdaac.usgs.gov/node/1079, 2009.
  • 26. Aydoğan B. ve Ayat B., Spatial variability of long-term trends of significant wave heights in the Black Sea, Applied Ocean Research, 79, 20-35, 2018.
  • 27. Copernicus. Gridded Mean Sea Level Trends Over Global Ocean. http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_OMI_SL_regional _ trends. Erişim tarihi Kasım 17, 2018.
  • 28. Çevre ve Şehircilik Bakanlığı ve Türkiye İstatistik Kurumu. TÜİK nüfus yoğunluğu verileri. http://cbs.csb.gov.tr. Erişim tarihi Nisan 17, 2017.
  • 29. Copernicus. Corine Land Cover. https://land.copernicus.eu. Erişim tarihi Nisan 17, 2017.
  • 30. Singh A., Pathirana S. ve Shi H., Assessing coastal vulnerability: developing a global index for measuring risk, Division of Early Warning and Assessment, UNEP, Nairobi, Kenya, 2005.
  • 31. Google. Google Earth Pro. https://www.google.com/earth/. Erişim Tarihi Ocak 2, 2017.
  • 32. Sudha Rani N., Satyanarayana A. ve Bhaskaran P., Coastal vulnerability assessment studies over India: areview, Nat Hazards, 77, 405-428, 2015.
  • 33. USGS. United States Geological Survey LANDSAT Satellite Images. http://earthexplorer.usgs.gov/. Erişim tarihi Aralık 17, 2017.
  • 34. McFeeters S., The use of the Normalized Difference Water Index, International Journal of Remote Sensing, 17(7), 1425-1432, 1996.
  • 35. Avşar N.B., Jin S., Kutoğlu H. ve Gürbüz G., Sea level change along the Black Sea coast from satellite altimetry tide gauge and GPS observations, Geodesy and Geodynamics, 7(1), 50-55, 2016.
  • 36. Copernicus, Product User Manual: Sea Level Ocean Monitoring Indicators for GLOBAL_OMI_SL_area_averaged_mean, GLOBAL_OMI_SL_regional_trends, Copernicus Marine Environment Monitoring Services, 2018.
  • 37. Çevre ve Şehircilik Bakanlığı. Coğrafi Veri Servisi Havuzu. http://cbs.csb.gov.tr/. Erişim tarihi Nisan 17, 2017.

Güneybatı Karadeniz kıyılarının kırılganlık analizi

Year 2020, Volume: 35 Issue: 2, 663 - 682, 25.12.2019
https://doi.org/10.17341/gazimmfd.504954

Abstract

İklim değişikliğinin sebep olduğu fırtına
karakteristiklerinde değişim, deniz seviyesi yükselmesi gibi süreçler kıyı
alanlarını doğrudan etkilemektedir. Kıyıların bu etkilere olan kırılganlığının
belirlenmesi, bu etkiler doğrultusunda planlama yapılması açısından büyük bir
önem taşımaktadır. Bu çalışmada Güneybatı Karadeniz kıyı alanlarının iklim
değişikliğinin etkisi altında kırılganlığı incelenmiştir. Bu maksatla kıyı
alanındaki kırılganlığı belirleyecek fiziksel ve sosyal özellikler incelenerek
uzamsal bir kırılganlık analizi gerçekleştirilmiştir. Kırılganlığı belirleyen
değişkenler; jeomorfoloji, kıyı eğimi, kıyı çizgisindeki zamansal değişim,
dalga yüksekliği, ortalama plaj genişliği, deniz seviyesi yükselmesi, nüfus
yoğunluğu ve arazi kullanımı olarak belirlenmiştir. Analiz metodu olarak
kıyısal kırılganlık indeksi (KKİ) kullanılmıştır. Elde edilen sonuçlar çalışma
alanı içerisinde Kıyıköy, Yalıköy, Karaburun, Kilyos, Riva, Sahilköy, Şile,
Ağva ve Kefken kıyılarının en yüksek seviyede kırılganlığa ve Ereğli ile
Zonguldak arasında uzanan kıyı şeridinin ise en düşük seviyede kırılganlığa
sahip olduğunu göstermektedir.

References

  • 1. IPCC, Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment, Cambridge University Pres, New York, A.B.D., 2007.
  • 2. IPCC, Climate Change 2013: The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Pres, New York, A.B.D., 2013.
  • 3. Abuodha P. ve Woodroffe C., International Assessments of the Vulnerability of the Coastal Zone to Climate Change Including an Australian Perspective, University of Wollongong, New South Wales, Avustralya, 2006.
  • 4. Bevacqua A., Yu D. ve Zhang Y., Coastal vulnerability: Evolving concepts in understanding vulnerable people and places, Environmental Science and Policy, 82, 19-29, 2018.
  • 5. IPCC, Climate Change 2001: Impacts, Adaptation and Vulnerability Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Pres, New York, A.B.D., 2001.
  • 6. Gornitz V., Daniels R., White T. ve Birdwell K., The Development of a Coastal Risk Assessment Database: Vulnerability to Sea-Level Rise in the U.S. Southeast, Journal of Coastal Research, Özel sayı no 12, 327-338, 1994.
  • 7. Thieler E. ve Hammar-Klose E., National Assessment of Coastal Vulnerability to Future Sea Level Rise: Preliminary Results for the U.S. Atlantic Coast, A.B.D. Jeolojik Araştırmalar Kurumu, 1999.
  • 8. Tragaki A., Gallousi C. ve Karymbalis E., Coastal Hazard Vulnerability Assessment Based on Geomorphic, Oceanographic and Demographic Parameters: The Case of the Peloponnese (Southern Greece), Land, 7(2), 1-16, 2018.
  • 9. Kantamaneni K., Phillips M., Thomas T. ve Jenkins R., Assessing coastal vulnerability: Development of a combined physical and economic index, Ocean & Coastal Management, 158, 164-175, 2018.
  • 10. Mani Murali R., Ankita M., Amrita S. ve Vethamony P., Coastal Vulnerability Assessment of Puducherry Coast India Using the Analytical Hierarchical Process, Natural Hazards and Earth System Science, 13, 3291-3311, 2013.
  • 11. Chang H.K., Liou J.C. ve Chen W.W., Protection Priority in the Coastal Environment Using a Hybrid AHP-TOPSIS Method on the Miaoli Coast, Taiwan, Journal of Coastal Research, 28(2), 369-374, 2012.
  • 12. Trifonova E. ve Eftimova P., Vulnerability of Varna central beach to extreme storm events, Journal of Environmental Protection and Ecology, 11, 1357-1365, 2010.
  • 13. Valchev N., Andreeva N., Eftimova P., Prodanov B. ve Kotsev I., Assessment of vulnerability to storm induced flood hazard along diverse coastline settings, FLOODrisk 2016 - 3rd European Conference on Flood Risk Management, Lyon-Fransa, 17-21 Ekim, 2016.
  • 14. Allenbach K., Garonna I., Herold C., Monioudi I., Giuliani G., Lehmann A. ve Velegrikas A., Black Sea beaches vulnerability to sea level rise, Environmental Science & Policy, 46, 95-109, 2015.
  • 15. Binita K., Shepherd J. ve Gaither C., Climate change vulnerability assessment in Georgia, Applied Geography, 62, 62-74, 2015.
  • 16. Vlasceanu E., Niculescu D., Petrisoaia S., Spinu A., Mateescu R., Lungu M.L., Vasilache A., Vlasceanu R. ve Memet E., Romanian Shore Vulnerability Due to Storm Induced Erosion Within The Last Decades, Journal of Environmental Protection and Ecology, 4(16), 1478-1486, 2015.
  • 17. Yüksel Y., Tan İ., Ayat B., Anıl Arı G., Aydoğan B. ve Şeker D., A Coastal Management Case Study in Karasu at Black Sea Region, Proceedings of the Twenty-third (2013) International Offshore and Polar Engineering, Alaska - Amerika Birleşik Devletleri, 1244-1250, 30 Haziran-5 Temmuz, 2013.
  • 18. Maktav D., Sunar Erbek F., ve Kabdasli S., Monitoring coastal erosion at the Black Sea coasts in Turkey using satellite data: A case study at the Lake Terkos, north-west Istanbul, International Journal of Remote Sensing, 23(19), 4115-4124, 2002.
  • 19. Aydoğan B., Ayat B. ve Yüksel Y., Black Sea wave energy atlas from 13 years hindcasted wave data, Renewable Energy, 57, 436-447, 2013.
  • 20. Görmüş T., Güney Batı Karadeniz Kıyılarının Deniz Seviyesi Yükselmelerine Karşı Kırılganlığının Belirlenmesi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 2017.
  • 21. Devlet Su İşleri, Akarsu Gözlem Yıllığı 2005-2012, Ankara, Türkiye.
  • 22. Medvedev I. P., Tides in the Black Sea: Observations and Numerical Modelling, Pure Appl. Geophys., 175, 6, 1951-1969, 2018.
  • 23. Aydoğan B., Ayat B., Yüksel Y. Analysis and Modelling of Water Level Changes in Bosphorus Entrance of the Black Sea. Water 2010 Conference, Quebec City, Canada, 5-7 July, 2010, Conference Proceedings, in CD.
  • 24. Abuodha P. ve Woodroffe C., Assessing vulnerability to sea-level rise using a coastal sensitivity index: a case study from southeast Australia, J Coast Conserv, 14, 189-205, 2010.
  • 25. NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team, ASTER Global Digital Elevation Model V002, https://lpdaac.usgs.gov/node/1079, 2009.
  • 26. Aydoğan B. ve Ayat B., Spatial variability of long-term trends of significant wave heights in the Black Sea, Applied Ocean Research, 79, 20-35, 2018.
  • 27. Copernicus. Gridded Mean Sea Level Trends Over Global Ocean. http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=GLOBAL_OMI_SL_regional _ trends. Erişim tarihi Kasım 17, 2018.
  • 28. Çevre ve Şehircilik Bakanlığı ve Türkiye İstatistik Kurumu. TÜİK nüfus yoğunluğu verileri. http://cbs.csb.gov.tr. Erişim tarihi Nisan 17, 2017.
  • 29. Copernicus. Corine Land Cover. https://land.copernicus.eu. Erişim tarihi Nisan 17, 2017.
  • 30. Singh A., Pathirana S. ve Shi H., Assessing coastal vulnerability: developing a global index for measuring risk, Division of Early Warning and Assessment, UNEP, Nairobi, Kenya, 2005.
  • 31. Google. Google Earth Pro. https://www.google.com/earth/. Erişim Tarihi Ocak 2, 2017.
  • 32. Sudha Rani N., Satyanarayana A. ve Bhaskaran P., Coastal vulnerability assessment studies over India: areview, Nat Hazards, 77, 405-428, 2015.
  • 33. USGS. United States Geological Survey LANDSAT Satellite Images. http://earthexplorer.usgs.gov/. Erişim tarihi Aralık 17, 2017.
  • 34. McFeeters S., The use of the Normalized Difference Water Index, International Journal of Remote Sensing, 17(7), 1425-1432, 1996.
  • 35. Avşar N.B., Jin S., Kutoğlu H. ve Gürbüz G., Sea level change along the Black Sea coast from satellite altimetry tide gauge and GPS observations, Geodesy and Geodynamics, 7(1), 50-55, 2016.
  • 36. Copernicus, Product User Manual: Sea Level Ocean Monitoring Indicators for GLOBAL_OMI_SL_area_averaged_mean, GLOBAL_OMI_SL_regional_trends, Copernicus Marine Environment Monitoring Services, 2018.
  • 37. Çevre ve Şehircilik Bakanlığı. Coğrafi Veri Servisi Havuzu. http://cbs.csb.gov.tr/. Erişim tarihi Nisan 17, 2017.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Tahsin Görmüş 0000-0003-4323-1610

Berna Ayat 0000-0002-8460-2839

Publication Date December 25, 2019
Submission Date December 29, 2018
Acceptance Date February 13, 2019
Published in Issue Year 2020 Volume: 35 Issue: 2

Cite

APA Görmüş, T., & Ayat, B. (2019). Güneybatı Karadeniz kıyılarının kırılganlık analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(2), 663-682. https://doi.org/10.17341/gazimmfd.504954
AMA Görmüş T, Ayat B. Güneybatı Karadeniz kıyılarının kırılganlık analizi. GUMMFD. December 2019;35(2):663-682. doi:10.17341/gazimmfd.504954
Chicago Görmüş, Tahsin, and Berna Ayat. “Güneybatı Karadeniz kıyılarının kırılganlık Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no. 2 (December 2019): 663-82. https://doi.org/10.17341/gazimmfd.504954.
EndNote Görmüş T, Ayat B (December 1, 2019) Güneybatı Karadeniz kıyılarının kırılganlık analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 2 663–682.
IEEE T. Görmüş and B. Ayat, “Güneybatı Karadeniz kıyılarının kırılganlık analizi”, GUMMFD, vol. 35, no. 2, pp. 663–682, 2019, doi: 10.17341/gazimmfd.504954.
ISNAD Görmüş, Tahsin - Ayat, Berna. “Güneybatı Karadeniz kıyılarının kırılganlık Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/2 (December 2019), 663-682. https://doi.org/10.17341/gazimmfd.504954.
JAMA Görmüş T, Ayat B. Güneybatı Karadeniz kıyılarının kırılganlık analizi. GUMMFD. 2019;35:663–682.
MLA Görmüş, Tahsin and Berna Ayat. “Güneybatı Karadeniz kıyılarının kırılganlık Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 2, 2019, pp. 663-82, doi:10.17341/gazimmfd.504954.
Vancouver Görmüş T, Ayat B. Güneybatı Karadeniz kıyılarının kırılganlık analizi. GUMMFD. 2019;35(2):663-82.