Research Article
BibTex RIS Cite

Nitrik asit ile modifiye edilmiş biyokütle temelli aktif karbonun süperkapasitör performansının incelenmesi

Year 2020, Volume: 35 Issue: 3, 1243 - 1256, 07.04.2020
https://doi.org/10.17341/gazimmfd.425990

Abstract

Bu çalışmada çay fabrikası atığından H3PO4
aktivasyonu ile aktif karbon üretilmiş, üretilen örneklere farklı derişimlerde
(v/v, % 3,33, % 10, % 20 ve % 40) HNO3 kullanılarak asidik yüzey
modifikasyonu işlemi uygulanmıştır. Örneklerin süperkapasitör elektrot
malzemesi olarak kullanılabilirliği, sulu asidik elektrolit (1 M H2SO4)
ortamında test edilmiştir. İşlem görmemiş ve modifiye aktif karbon örneklerinin
yüzey karakterizayonu çeşitli kimyasal ve fiziksel yöntemlerle
gerçekleştirilmiş, yüzey oksijenli grupların tipi ve miktarının elektrokimyasal
performans üzerine etkisi araştırılmıştır. Sonuç olarak, modifikasyonda kullanılan
asit derişiminin aktif karbonun yüzey alanı ve gözenekliliğini önemli oranda
etkilediği belirlenmiştir. Asit derişimi % 3,33’ün üzerine çıktığında yüzey
alanında büyük düşüş gözlenmiştir. Asit derişiminin artmasıyla yüzeydeki
oksijenli grupların derişiminde artış gözlenirken, fonksiyonel grup tipi
farklılık göstermektedir. % 3,33 HNO3 ile modifiye edilen örnekten
hazırlanan elektrot, işlem görmemiş aktif karbondan hazırlanan elektrota göre
daha iyi performans sergilemiş, asit derişimi arttıkça elektrot performansında
elektrot iç direncindeki artışa bağlı olarak önemli ölçüde düşüş gözlenmiştir.

References

  • [1] Liu D.D., Gao J.H., Cao Q.X., Wu S.H., Qin Y.K., Improvement of activated carbon from Jixi bituminous coal by air preoxidation, Energy & Fuels, 31 (2), 1406–1415, 2017.
  • [2] Khosravi R., Azizi A., Ghaedrahmati R., Gupta V.K., Agarwal S., Adsorption of gold from cyanide leaching solution onto activated carbon originating from coconut shell-optimization, kinetics and equilibrium studies, Journal of Industrial and Engineering Chemistry, 54, 464-471, 2017.
  • [3] Yagmur E., Ozmak M., Aktas Z., A novel method for production of activated carbon from waste tea by chemical activation with microwave energy, Fuel, 87 (15-16), 3278-3285, 2008.
  • [4] Tsubota T., Morita M., Kamimura S., Ohno T., New approach for synthesis of activated carbon from bamboo, Journal of Porous Materials, 23 (2), 349-355, 2016.
  • [5] Balbaşı M., Şahin A., Symmetrical supercapacitor application with low activated carbon content, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (4), 683-692, 2015.
  • [6] Imoto K., Takahashi K., Yamaguchi T., Komura T., Nakamura J., Murata K., High-performance carbon counter electrode for dye-sensitized solar cells, Solar Energy Materials & Solar Cells, 79, 459–469, 2003.
  • [7] Elazari R., Salitra G., Garsuch A., Panchenko A., Aurbach D., Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries, Advanced Materials, 2 (47), 5641-5644, 2011.
  • [8] Kim C.S., Srimuk P., Lee J., Fleischmann S., Aslan M., Presser V., Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization, Carbon, 122, 329-335, 2017.
  • [9] Aygün A., Yenisoy Karakaş Y., Duman I., Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties, Microporous and Mesoporous Materials, 66 (2-3), 189-195, 2003.
  • [10] Bhatnagar A., Hogland W., Marques M., Sillanpaa M., An overview of the modification methods of activated carbon for its water treatment applications, Chemical Engineering Journal, 219, 499-511. 2013.
  • [11] Laszlo K., Tombacz E., Josepovits K., Effect of activation on the surface chemistry of carbons from polymer precursors, Carbon, 39 (8), 1217-1228, 2001.
  • [12] Gurten Inal I.I., Holmes S.M., Banford A., Aktas Z., The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea, Applied Surface Science, 357, Part A, 696-703, 2015.
  • [13] Gao F., Qu J.Y., Zhao Z.B., Wang Z.Y., Qiu J.S., Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors, Electrochimica Acta, 190, 1134-1141, 2016.
  • [14] Tian X., Ma H.R., Li Z., Yan S.C., Ma L., Yu F., Wang G., Guo X.H., Ma Y.Q., Wong C.P., Flute type micropores activated carbon from cotton stalk for high performance supercapacitors, Journal of Power Sources, 359, 88-96, 2017.
  • [15] Gurten Inal I.I., Holmes S.M., Yagmur E., Ermumcu N., Banford A., Aktas Z., The supercapacitor performance of hierarchical porous activated carbon electrodes synthesised from demineralised (waste) cumin plant by microwave pretreatment, Journal of Industrial and Engineering Chemistry, 61, 124-132, 2018.
  • [16] Pandolfo A.G., Hollenkamp A.F., Carbon properties and their role in supercapacitors, Journal of Power Sources, 157 (1), 11-27, 2006.
  • [17] Han Y., Zhao P.P., Dong X.T., Zhang C., Liu S.X., Improvement in electrochemical capacitance of activated carbon from scrap tires by nitric acid treatment, Frontiers of Materials Science, 8 (4), 391-398, 2014.
  • [18] Fan L.Z., Quiao S.Y., Song W.L., Wu M., He X.B., Qu X.H. Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors, Electrochimica Acta, 105, 299-304, 2013.
  • [19] Hsieh C.T., Teng H., Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon, 40, 667-674, 2002.
  • [20] Nian Y.R. ve Teng H. Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors, Journal of Electroanalytical Chemistry, 540, 119-127, 2003.
  • [21] Gokce Y., Aktas Z., Nitric acid modification of activated carbon produced from waste and adsorption of methylene blue and phenol, Applied Surface Science, 313, 352-359, 2014.
  • [22] Boehm H.P., Some aspects of the surface chemistry of carbon blacks and other carbons Carbon, 32, 759-769, 1994.
  • [23] de Celis J., Amadeo N.E., Cukierman A.L., In situ modification of activated carbons developed from a native invasive wood on removal of trace toxic metals from wastewater, Journal of Hazardous Materials, 161 (1), 217-223, 2009.
  • [24] Okajima K., Ohta K., Sudoh M., Capacitance behavior of activated carbon fibers with oxygen-plasma treatment, Electrochim Acta, 50, 2227-2231, 2005.
  • [25] Oda H., Yamashita A., Minoura S., Okamoto M., Morimoto T., Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor, Journal of Power Sources, 158, 1510-1516, 2006.
Year 2020, Volume: 35 Issue: 3, 1243 - 1256, 07.04.2020
https://doi.org/10.17341/gazimmfd.425990

Abstract

References

  • [1] Liu D.D., Gao J.H., Cao Q.X., Wu S.H., Qin Y.K., Improvement of activated carbon from Jixi bituminous coal by air preoxidation, Energy & Fuels, 31 (2), 1406–1415, 2017.
  • [2] Khosravi R., Azizi A., Ghaedrahmati R., Gupta V.K., Agarwal S., Adsorption of gold from cyanide leaching solution onto activated carbon originating from coconut shell-optimization, kinetics and equilibrium studies, Journal of Industrial and Engineering Chemistry, 54, 464-471, 2017.
  • [3] Yagmur E., Ozmak M., Aktas Z., A novel method for production of activated carbon from waste tea by chemical activation with microwave energy, Fuel, 87 (15-16), 3278-3285, 2008.
  • [4] Tsubota T., Morita M., Kamimura S., Ohno T., New approach for synthesis of activated carbon from bamboo, Journal of Porous Materials, 23 (2), 349-355, 2016.
  • [5] Balbaşı M., Şahin A., Symmetrical supercapacitor application with low activated carbon content, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (4), 683-692, 2015.
  • [6] Imoto K., Takahashi K., Yamaguchi T., Komura T., Nakamura J., Murata K., High-performance carbon counter electrode for dye-sensitized solar cells, Solar Energy Materials & Solar Cells, 79, 459–469, 2003.
  • [7] Elazari R., Salitra G., Garsuch A., Panchenko A., Aurbach D., Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries, Advanced Materials, 2 (47), 5641-5644, 2011.
  • [8] Kim C.S., Srimuk P., Lee J., Fleischmann S., Aslan M., Presser V., Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization, Carbon, 122, 329-335, 2017.
  • [9] Aygün A., Yenisoy Karakaş Y., Duman I., Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties, Microporous and Mesoporous Materials, 66 (2-3), 189-195, 2003.
  • [10] Bhatnagar A., Hogland W., Marques M., Sillanpaa M., An overview of the modification methods of activated carbon for its water treatment applications, Chemical Engineering Journal, 219, 499-511. 2013.
  • [11] Laszlo K., Tombacz E., Josepovits K., Effect of activation on the surface chemistry of carbons from polymer precursors, Carbon, 39 (8), 1217-1228, 2001.
  • [12] Gurten Inal I.I., Holmes S.M., Banford A., Aktas Z., The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea, Applied Surface Science, 357, Part A, 696-703, 2015.
  • [13] Gao F., Qu J.Y., Zhao Z.B., Wang Z.Y., Qiu J.S., Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors, Electrochimica Acta, 190, 1134-1141, 2016.
  • [14] Tian X., Ma H.R., Li Z., Yan S.C., Ma L., Yu F., Wang G., Guo X.H., Ma Y.Q., Wong C.P., Flute type micropores activated carbon from cotton stalk for high performance supercapacitors, Journal of Power Sources, 359, 88-96, 2017.
  • [15] Gurten Inal I.I., Holmes S.M., Yagmur E., Ermumcu N., Banford A., Aktas Z., The supercapacitor performance of hierarchical porous activated carbon electrodes synthesised from demineralised (waste) cumin plant by microwave pretreatment, Journal of Industrial and Engineering Chemistry, 61, 124-132, 2018.
  • [16] Pandolfo A.G., Hollenkamp A.F., Carbon properties and their role in supercapacitors, Journal of Power Sources, 157 (1), 11-27, 2006.
  • [17] Han Y., Zhao P.P., Dong X.T., Zhang C., Liu S.X., Improvement in electrochemical capacitance of activated carbon from scrap tires by nitric acid treatment, Frontiers of Materials Science, 8 (4), 391-398, 2014.
  • [18] Fan L.Z., Quiao S.Y., Song W.L., Wu M., He X.B., Qu X.H. Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors, Electrochimica Acta, 105, 299-304, 2013.
  • [19] Hsieh C.T., Teng H., Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon, 40, 667-674, 2002.
  • [20] Nian Y.R. ve Teng H. Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors, Journal of Electroanalytical Chemistry, 540, 119-127, 2003.
  • [21] Gokce Y., Aktas Z., Nitric acid modification of activated carbon produced from waste and adsorption of methylene blue and phenol, Applied Surface Science, 313, 352-359, 2014.
  • [22] Boehm H.P., Some aspects of the surface chemistry of carbon blacks and other carbons Carbon, 32, 759-769, 1994.
  • [23] de Celis J., Amadeo N.E., Cukierman A.L., In situ modification of activated carbons developed from a native invasive wood on removal of trace toxic metals from wastewater, Journal of Hazardous Materials, 161 (1), 217-223, 2009.
  • [24] Okajima K., Ohta K., Sudoh M., Capacitance behavior of activated carbon fibers with oxygen-plasma treatment, Electrochim Acta, 50, 2227-2231, 2005.
  • [25] Oda H., Yamashita A., Minoura S., Okamoto M., Morimoto T., Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor, Journal of Power Sources, 158, 1510-1516, 2006.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

İffet İşıl Gürten İnal 0000-0001-5144-2800

Yavuz Gökçe 0000-0003-3476-2938

Emine Yağmur 0000-0002-3422-4075

Zeki Aktaş 0000-0002-2567-455X

Publication Date April 7, 2020
Submission Date May 22, 2018
Acceptance Date January 1, 2020
Published in Issue Year 2020 Volume: 35 Issue: 3

Cite

APA Gürten İnal, İ. İ., Gökçe, Y., Yağmur, E., Aktaş, Z. (2020). Nitrik asit ile modifiye edilmiş biyokütle temelli aktif karbonun süperkapasitör performansının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1243-1256. https://doi.org/10.17341/gazimmfd.425990
AMA Gürten İnal İİ, Gökçe Y, Yağmur E, Aktaş Z. Nitrik asit ile modifiye edilmiş biyokütle temelli aktif karbonun süperkapasitör performansının incelenmesi. GUMMFD. April 2020;35(3):1243-1256. doi:10.17341/gazimmfd.425990
Chicago Gürten İnal, İffet İşıl, Yavuz Gökçe, Emine Yağmur, and Zeki Aktaş. “Nitrik Asit Ile Modifiye Edilmiş biyokütle Temelli Aktif Karbonun süperkapasitör performansının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no. 3 (April 2020): 1243-56. https://doi.org/10.17341/gazimmfd.425990.
EndNote Gürten İnal İİ, Gökçe Y, Yağmur E, Aktaş Z (April 1, 2020) Nitrik asit ile modifiye edilmiş biyokütle temelli aktif karbonun süperkapasitör performansının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 3 1243–1256.
IEEE İ. İ. Gürten İnal, Y. Gökçe, E. Yağmur, and Z. Aktaş, “Nitrik asit ile modifiye edilmiş biyokütle temelli aktif karbonun süperkapasitör performansının incelenmesi”, GUMMFD, vol. 35, no. 3, pp. 1243–1256, 2020, doi: 10.17341/gazimmfd.425990.
ISNAD Gürten İnal, İffet İşıl et al. “Nitrik Asit Ile Modifiye Edilmiş biyokütle Temelli Aktif Karbonun süperkapasitör performansının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/3 (April 2020), 1243-1256. https://doi.org/10.17341/gazimmfd.425990.
JAMA Gürten İnal İİ, Gökçe Y, Yağmur E, Aktaş Z. Nitrik asit ile modifiye edilmiş biyokütle temelli aktif karbonun süperkapasitör performansının incelenmesi. GUMMFD. 2020;35:1243–1256.
MLA Gürten İnal, İffet İşıl et al. “Nitrik Asit Ile Modifiye Edilmiş biyokütle Temelli Aktif Karbonun süperkapasitör performansının Incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 3, 2020, pp. 1243-56, doi:10.17341/gazimmfd.425990.
Vancouver Gürten İnal İİ, Gökçe Y, Yağmur E, Aktaş Z. Nitrik asit ile modifiye edilmiş biyokütle temelli aktif karbonun süperkapasitör performansının incelenmesi. GUMMFD. 2020;35(3):1243-56.