Research Article
BibTex RIS Cite
Year 2020, Volume: 35 Issue: 3, 1399 - 1408, 07.04.2020
https://doi.org/10.17341/gazimmfd.467099

Abstract

References

  • Saratale R.G., Saratale G.D., Chang J.S., Govindwar S.P., Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326, J. Hazard. Mater., 166, 1421-1428, 2009.
  • Lıu W., Lıu L., Lıu C., Hao Y., Yang H., Yuan B., Jıang J., Methylene blue enhances the anaerobic decolorization and detoxication of azo dye by Shewanella onediensis MR-1, Biochem. Eng. J., 110, 115-124, 2016.
  • Gajera H.P., Bambharolia R.P., Hirpara D.G., Patel S.V., Golakiya B.A., Molecular identification and characterization of novel Hypocrea koningii associated with azo dyes decolorization and biodegradation of textile dye effluents, Process Safety and Environmental Protection, 98, 406-416, 2015.
  • Xu F., Mou Z., Geng J., Zhang X., Li C., Azo dye decolorization by a halotolerant exoelectrogenic decolorizer isolated from marine sediment, Chemosphere 158, 30-36, 2016.
  • Meerbergen K., Crauwels S., Willems K.A., Dewil R., Impe J.V., Appels L., Lievens B., Decolorization of reactive azo dyes using a sequential chemical and activated sludge treatment, J. Biosci. Bioeng., 124(6), 668-673, 2017.
  • Li T., Guthrie J.T., Colour removal from aqueous solutions of metal-complex azo dyes using bacterial cells of Shewanella strain J18 143, Bioresour. Technol., 101, 4291-4295, 2010.
  • Tan L., He M., Song L., Fu X., Shı S., Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1, Bioresour. Technol., 203, 287-294, 2016.
  • Aksu Z., Dönmez G., Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis, Process Biochem., 40, 2443-2454, 2005.
  • Fu Y., Viraraghavan T., Fungal decolorization of dye wastewaters: a review. Bioresour. Technol., 79, 251-262, 2001.
  • Sharma S.C.D., Sun Q., Li J., Wang Y., Suanon F., Yang J., Yu C.P., Decolorization of azo dye methyl red by suspended and co-immobilized bacterial cells with mediators anthraquinone-2,6-disulfonate and Fe3O4 nanoparticles, Int. Biodeterior. Biodegrad., 112, 88-97, 2016.
  • Tuttolomondo M.V., Alvarez G.S., Desimone M.F., Diaz L.E., Removal of azo dyes from water by sol–gel immobilized Pseudomonas sp., J. Environ. Chem. Eng., 2, 131-136, 2014.
  • Przystas W., Zabłocka-Godlewska E., Grabinska-Sota E., Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports, Brazilian Journal of Microbiology, 49, 285–295, 2018.
  • Erdem F., Tosun A., Ergun M., Biosorption of Remazol Yellow (RR) by Saccharomyces cerevisiae in a batch system, Journal of the Faculty of Engineering and Architecture of Gazi University 31(4), 971-978, 2016.
  • Martorell M.M., Pajot H.F., Figueroa L.I.C., Dye-decolourizing yeasts isolated from Las Yungas rainforest. Dye assimilation and removal used as selection criteria, Int. Biodeterior. Biodegrad., 66, 25-32, 2012.
  • Hameed B.B., Ismail, Z.Z., Decolorization, biodegradation and detoxification of reactive red azo dye using non-adapted immobilized mixed cells, Biochemical Engineering Journal, 137, 71–77, 2018.
  • Rosu C.M., Avadanei M., Gherghel D., Mihasan M., Mihai C., Trifan A., Miron A., Vochita G., Biodegradation and Detoxification Efficiency of Azo-Dye Reactive Orange 16 by Pichia kudriavzevii CR-Y103, Water Air Soil Pollut., 229 (15), 1-18, 2018.
  • Hadibarata T., Syafiuddin A., Al‑Dhabaan F.A., • Elshikh M.S., Rubiyatno, Biodegradation of Mordant orange-1 using newly isolated strain Trichoderma harzianum RY44 and its metabolite appraisal, Bioprocess Biosyst. Eng., 41, 621–632, 2018.
  • Saroj S., Kumar K., Pareek N., Prasad R., Singh R.P., Biodegradation of azo dyes Acid Red 183, Direct Blue 15 and Direct Red 75 by the isolate Penicillium oxalicum SAR-3, Chemosphere, 107, 240–248, 2014.
  • Tan L., Ning S., Zhang X., Shi S., Aerobic decolorization and degradation of azo dyes by growing cells of a newly isolated yeast Candida tropicalis TL-F1, Bioresour. Technol., 138, 307–313, 2013.
  • Das D., Charumathi D., Das N., Combined effects of sugarcane bagasse extract and synthetic dyes on the growth and bioaccumulation properties of Pichia fermentans MTCC 189, J. Hazard. Mater., 183, 497-505, 2010.
  • Qu Y., Cao X., Ma Q., Shi S., Tan L., Li X., Zhou H., Zhang X., Zhou J., Aerobic decolorization and degradation of Acid Red B by a newly isolated Pichia sp. TCL, J. Hazard. Mater., 223–224, 31–38, 2012.
  • Das D., Charumathi D., Das N., Bioaccumulation of the synthetic dye Basic Violet 3 and heavy metals in single and binary systems by Candida tropicalis grown in a sugarcane bagasse extract medium: Modelling optimal conditions using response surface methodology (RSM) and inhibition kinetics, J. Hazard. Mater., 186, 1541–1552, 2011.
  • Dönmez G., Bioaccumulation of the reactive textile dyes by Candida tropicalis growing in molasses medium, Enzyme and Microb. Technol., 30, 363–366, 2002.
  • Arora S., Saini H.S., Singh K., Decolorisation of a monoazo disperse dye with Candida tropicalis, Color. Technol., 121, 298-303, 2005.
  • Gönen F., Aksu Z., Predictive expressions of growth and Remazol Turquoise Blue-G reactive dye bioaccumulation properties of Candida utilis, Enzyme and Microb. Technol., 45, 15-21, 2009.
  • Aksu Z. Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochem., 38, 1437-1444, 2003.
  • Jadhav J.P., Parshetti G.K., Kalme S.D., Govindwar S.P., Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463, Chemosphere, 68, 394–400, 2007.
  • Pajot H.F., Farina J.I., Figueroa L.I.C., Evidence on manganese peroxidase and tyrosinase expression during decolorization of textile industry dyes by Trichosporon akiyoshidainum, Int. Biodeterior. Biodegrad., 65(8), 1199-1207, 2011.
  • Tan L., Li H., Ning S., Xu B., Aerobic decolorization and degradation of azo dyes by suspended growing cells and immobilized cells of a newly isolated yeast Magnusiomyces ingens LH-F1, Bioresour. Technol. 158, 321–328, 2014.
  • Charumathi D., Das N., Bioaccumulation of Synthetic Dyes by Candida tropicalis Growing in Sugarcane Bagasse Extract Medium, Advances in Biological Research, 4(4), 233-240, 2010.
  • Song L., Shao Y., Ning S., Tan L., Performance of a newly isolated salt-tolerant yeast strain Pichia occidentalis G1 for degrading and detoxifying azo dyes, Bioresour. Technol., 233, 21–29, 2017.
  • Saravanan P., Sivakumar P., Suganya T., Nagendra Gandhi N., Renganathan S., Bioaccumulation of reactive red 11 using live yeast Rhodotorula glutinis, Indian Journal of Environmental Protection 32(3), 249-255, 2012.
  • Ramalho P.A., Scholze H., Helena Cardoso M., Teresa Ramalho M., Oliveira-Campos A.M., Improved conditions for the aerobic reductive decolourisation of azo dyes by Candida zeylanoides, Enzyme and Microb. Technol., 31, 848–854, 2002.
  • Meehan C., Banat I., Mcmullan G., Nigam P., Smyth F., Marchant R., Decolorization of Remazol Black-B using a thermotolerant yeast, Kluyveromyces marxianus IMB3. Environ. Int., 26, 75-79, 2000.
  • Vijaykumar M., Veeranagouda Y., Neelakanteshwar K., Karegoudar T., Decolorization of 1: 2 metal complex dye Acid blue 193 by a newly isolated fungus, Cladosporium cladosporioides, World J. Microbiol. Biotechnol., 22, 157-162, 2006.
  • Blánquez P., Caminal G., Sarrà M., Vicent T., The effect of HRT on the decolourisation of the Grey Lanaset G textile dye by Trametes versicolor, Chem. Eng. J., 126, 163-169, 2007.
  • Park C., Lee M., Lee B., Kim S.W., Chase H.C., Lee J., Kim S., Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii, Biochem. Eng. J., 36, 59–65, 2007.
  • Xin B., Chen G., Zheng W., Bioaccumulation of Cu-complex reactive dye by growing pellets of Penicillium oxalicum and its mechanism, Water Res., 44, 3565-3572, 2010.
  • Ghosh A., Ghosh Dastidar M., Ramaswamy Sreekrishnan T., Bioremediation of a Chromium Complex Dye UsingAspergillus flavus and Aspergillus tamarii, Chemical Engineering Technology, 39(9), 1636-1644, 2016.
  • Ghosh, A., Ghosh Dastidar, M., Ramaswamy Sreekrishnan, T., Bioremediation of chromium complex dyes and treatment of sludge generated during the process. Int. Biodeterior. Biodegrad, 119, 448-460, 2017.
  • Kalpana D., Shim J.H., Oh B.T., Senthil K., Lee Y.S., Bioremediation of the heavy metal complex dye Isolan Dark Blue 2SGL-01 by white rot fungus Irpex lacteus, J. Hazard. Mater., 198, 198–205, 2011.
  • Blackburn R.S., Burkınshaw S.M., A greener approach to cotton dyeings. Part 2: application of 1:2 metal complex acid dyes. Green Chemistry, 4, 261-265, 2002.
  • Mıller G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 31, 426-428, 1959.
  • Taşkın M., Erdal S., Reactive dye bioaccumulation by fungus Aspergillus niger isolated from the effluent of sugar fabric-contaminated soil, Toxicology and Industrial Health 26(4), 239–247, 2010.
  • Chen K.C., Wu J. Y., Lıou D.J., Hwang S.C.J., Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol., 101, 57-68, 2003.
  • Keklikcioğlu Çakmak N.,, Açıkel Ü., Candida utilis mayasiyla lipaz enzimi aktivitesinin farkli ortam koşullarinda incelenmesi, Journal of the Faculty of Engineering and Architecture of Gazi University, 30(3), 475-485, 2015.
  • Segel I. H., Enzyme kinetics, Wiley, New York, Rapid equilibrium partial and mixed-type inhibition, 161-226, 1975.
  • Sponza D.T., Işık M., Decolorization and inhibition kinetic of Direct Black 38 azo dye with granulated anaerobic sludge, Enzyme Microb. Technol., 34, 147-158, 2004.

Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : üreme ve inhibisyon kinetiği

Year 2020, Volume: 35 Issue: 3, 1399 - 1408, 07.04.2020
https://doi.org/10.17341/gazimmfd.467099

Abstract

Bu çalışmada Acid
Violet 90 Cr-kompleks boyar maddesinin sulu ortamlardan giderimi için Candida tropicalis mayası kullanılmıştır.
Boyar madde giderimine başlangıç pH (3-6), indirgen şeker derişimi (1-20 g/L)
ve boyar madde derişiminin (20-400 mg/L) etkisi araştırılmıştır. En yüksek
biyobirikim pH 5’te, başlangıç boyar madde derişimi 50 mg/L iken % 50,3 olarak
elde edilmiştir. Boyar madde içermeyen kontrol ortamında Monod doygunluk sabiti
ve maksimum özgül üreme hızı 1,21 mg/L ve 0,267 1/h olarak bulunmuştur. AV90’nın
C. tropicalis üremesine inhibisyonunu
belirlemek için Lineer-karma tip inhibisyon modeli kullanılmıştır. AV90’nın
inhibisyon sabiti (KI) 1008 mg/L olarak elde edilmiştir. Deneysel sonuçlar
ve kinetik modelden elde edilen KI değerinin yüksek olması C. tropicalis’in azo boyar maddeye karşı
dirençli olduğunu ve azo boyar maddeleri içeren endüstriyel atıksuların
biyolojik arıtımında kullanılabileceğini göstermektedir.




References

  • Saratale R.G., Saratale G.D., Chang J.S., Govindwar S.P., Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326, J. Hazard. Mater., 166, 1421-1428, 2009.
  • Lıu W., Lıu L., Lıu C., Hao Y., Yang H., Yuan B., Jıang J., Methylene blue enhances the anaerobic decolorization and detoxication of azo dye by Shewanella onediensis MR-1, Biochem. Eng. J., 110, 115-124, 2016.
  • Gajera H.P., Bambharolia R.P., Hirpara D.G., Patel S.V., Golakiya B.A., Molecular identification and characterization of novel Hypocrea koningii associated with azo dyes decolorization and biodegradation of textile dye effluents, Process Safety and Environmental Protection, 98, 406-416, 2015.
  • Xu F., Mou Z., Geng J., Zhang X., Li C., Azo dye decolorization by a halotolerant exoelectrogenic decolorizer isolated from marine sediment, Chemosphere 158, 30-36, 2016.
  • Meerbergen K., Crauwels S., Willems K.A., Dewil R., Impe J.V., Appels L., Lievens B., Decolorization of reactive azo dyes using a sequential chemical and activated sludge treatment, J. Biosci. Bioeng., 124(6), 668-673, 2017.
  • Li T., Guthrie J.T., Colour removal from aqueous solutions of metal-complex azo dyes using bacterial cells of Shewanella strain J18 143, Bioresour. Technol., 101, 4291-4295, 2010.
  • Tan L., He M., Song L., Fu X., Shı S., Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1, Bioresour. Technol., 203, 287-294, 2016.
  • Aksu Z., Dönmez G., Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis, Process Biochem., 40, 2443-2454, 2005.
  • Fu Y., Viraraghavan T., Fungal decolorization of dye wastewaters: a review. Bioresour. Technol., 79, 251-262, 2001.
  • Sharma S.C.D., Sun Q., Li J., Wang Y., Suanon F., Yang J., Yu C.P., Decolorization of azo dye methyl red by suspended and co-immobilized bacterial cells with mediators anthraquinone-2,6-disulfonate and Fe3O4 nanoparticles, Int. Biodeterior. Biodegrad., 112, 88-97, 2016.
  • Tuttolomondo M.V., Alvarez G.S., Desimone M.F., Diaz L.E., Removal of azo dyes from water by sol–gel immobilized Pseudomonas sp., J. Environ. Chem. Eng., 2, 131-136, 2014.
  • Przystas W., Zabłocka-Godlewska E., Grabinska-Sota E., Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports, Brazilian Journal of Microbiology, 49, 285–295, 2018.
  • Erdem F., Tosun A., Ergun M., Biosorption of Remazol Yellow (RR) by Saccharomyces cerevisiae in a batch system, Journal of the Faculty of Engineering and Architecture of Gazi University 31(4), 971-978, 2016.
  • Martorell M.M., Pajot H.F., Figueroa L.I.C., Dye-decolourizing yeasts isolated from Las Yungas rainforest. Dye assimilation and removal used as selection criteria, Int. Biodeterior. Biodegrad., 66, 25-32, 2012.
  • Hameed B.B., Ismail, Z.Z., Decolorization, biodegradation and detoxification of reactive red azo dye using non-adapted immobilized mixed cells, Biochemical Engineering Journal, 137, 71–77, 2018.
  • Rosu C.M., Avadanei M., Gherghel D., Mihasan M., Mihai C., Trifan A., Miron A., Vochita G., Biodegradation and Detoxification Efficiency of Azo-Dye Reactive Orange 16 by Pichia kudriavzevii CR-Y103, Water Air Soil Pollut., 229 (15), 1-18, 2018.
  • Hadibarata T., Syafiuddin A., Al‑Dhabaan F.A., • Elshikh M.S., Rubiyatno, Biodegradation of Mordant orange-1 using newly isolated strain Trichoderma harzianum RY44 and its metabolite appraisal, Bioprocess Biosyst. Eng., 41, 621–632, 2018.
  • Saroj S., Kumar K., Pareek N., Prasad R., Singh R.P., Biodegradation of azo dyes Acid Red 183, Direct Blue 15 and Direct Red 75 by the isolate Penicillium oxalicum SAR-3, Chemosphere, 107, 240–248, 2014.
  • Tan L., Ning S., Zhang X., Shi S., Aerobic decolorization and degradation of azo dyes by growing cells of a newly isolated yeast Candida tropicalis TL-F1, Bioresour. Technol., 138, 307–313, 2013.
  • Das D., Charumathi D., Das N., Combined effects of sugarcane bagasse extract and synthetic dyes on the growth and bioaccumulation properties of Pichia fermentans MTCC 189, J. Hazard. Mater., 183, 497-505, 2010.
  • Qu Y., Cao X., Ma Q., Shi S., Tan L., Li X., Zhou H., Zhang X., Zhou J., Aerobic decolorization and degradation of Acid Red B by a newly isolated Pichia sp. TCL, J. Hazard. Mater., 223–224, 31–38, 2012.
  • Das D., Charumathi D., Das N., Bioaccumulation of the synthetic dye Basic Violet 3 and heavy metals in single and binary systems by Candida tropicalis grown in a sugarcane bagasse extract medium: Modelling optimal conditions using response surface methodology (RSM) and inhibition kinetics, J. Hazard. Mater., 186, 1541–1552, 2011.
  • Dönmez G., Bioaccumulation of the reactive textile dyes by Candida tropicalis growing in molasses medium, Enzyme and Microb. Technol., 30, 363–366, 2002.
  • Arora S., Saini H.S., Singh K., Decolorisation of a monoazo disperse dye with Candida tropicalis, Color. Technol., 121, 298-303, 2005.
  • Gönen F., Aksu Z., Predictive expressions of growth and Remazol Turquoise Blue-G reactive dye bioaccumulation properties of Candida utilis, Enzyme and Microb. Technol., 45, 15-21, 2009.
  • Aksu Z. Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochem., 38, 1437-1444, 2003.
  • Jadhav J.P., Parshetti G.K., Kalme S.D., Govindwar S.P., Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463, Chemosphere, 68, 394–400, 2007.
  • Pajot H.F., Farina J.I., Figueroa L.I.C., Evidence on manganese peroxidase and tyrosinase expression during decolorization of textile industry dyes by Trichosporon akiyoshidainum, Int. Biodeterior. Biodegrad., 65(8), 1199-1207, 2011.
  • Tan L., Li H., Ning S., Xu B., Aerobic decolorization and degradation of azo dyes by suspended growing cells and immobilized cells of a newly isolated yeast Magnusiomyces ingens LH-F1, Bioresour. Technol. 158, 321–328, 2014.
  • Charumathi D., Das N., Bioaccumulation of Synthetic Dyes by Candida tropicalis Growing in Sugarcane Bagasse Extract Medium, Advances in Biological Research, 4(4), 233-240, 2010.
  • Song L., Shao Y., Ning S., Tan L., Performance of a newly isolated salt-tolerant yeast strain Pichia occidentalis G1 for degrading and detoxifying azo dyes, Bioresour. Technol., 233, 21–29, 2017.
  • Saravanan P., Sivakumar P., Suganya T., Nagendra Gandhi N., Renganathan S., Bioaccumulation of reactive red 11 using live yeast Rhodotorula glutinis, Indian Journal of Environmental Protection 32(3), 249-255, 2012.
  • Ramalho P.A., Scholze H., Helena Cardoso M., Teresa Ramalho M., Oliveira-Campos A.M., Improved conditions for the aerobic reductive decolourisation of azo dyes by Candida zeylanoides, Enzyme and Microb. Technol., 31, 848–854, 2002.
  • Meehan C., Banat I., Mcmullan G., Nigam P., Smyth F., Marchant R., Decolorization of Remazol Black-B using a thermotolerant yeast, Kluyveromyces marxianus IMB3. Environ. Int., 26, 75-79, 2000.
  • Vijaykumar M., Veeranagouda Y., Neelakanteshwar K., Karegoudar T., Decolorization of 1: 2 metal complex dye Acid blue 193 by a newly isolated fungus, Cladosporium cladosporioides, World J. Microbiol. Biotechnol., 22, 157-162, 2006.
  • Blánquez P., Caminal G., Sarrà M., Vicent T., The effect of HRT on the decolourisation of the Grey Lanaset G textile dye by Trametes versicolor, Chem. Eng. J., 126, 163-169, 2007.
  • Park C., Lee M., Lee B., Kim S.W., Chase H.C., Lee J., Kim S., Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii, Biochem. Eng. J., 36, 59–65, 2007.
  • Xin B., Chen G., Zheng W., Bioaccumulation of Cu-complex reactive dye by growing pellets of Penicillium oxalicum and its mechanism, Water Res., 44, 3565-3572, 2010.
  • Ghosh A., Ghosh Dastidar M., Ramaswamy Sreekrishnan T., Bioremediation of a Chromium Complex Dye UsingAspergillus flavus and Aspergillus tamarii, Chemical Engineering Technology, 39(9), 1636-1644, 2016.
  • Ghosh, A., Ghosh Dastidar, M., Ramaswamy Sreekrishnan, T., Bioremediation of chromium complex dyes and treatment of sludge generated during the process. Int. Biodeterior. Biodegrad, 119, 448-460, 2017.
  • Kalpana D., Shim J.H., Oh B.T., Senthil K., Lee Y.S., Bioremediation of the heavy metal complex dye Isolan Dark Blue 2SGL-01 by white rot fungus Irpex lacteus, J. Hazard. Mater., 198, 198–205, 2011.
  • Blackburn R.S., Burkınshaw S.M., A greener approach to cotton dyeings. Part 2: application of 1:2 metal complex acid dyes. Green Chemistry, 4, 261-265, 2002.
  • Mıller G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 31, 426-428, 1959.
  • Taşkın M., Erdal S., Reactive dye bioaccumulation by fungus Aspergillus niger isolated from the effluent of sugar fabric-contaminated soil, Toxicology and Industrial Health 26(4), 239–247, 2010.
  • Chen K.C., Wu J. Y., Lıou D.J., Hwang S.C.J., Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol., 101, 57-68, 2003.
  • Keklikcioğlu Çakmak N.,, Açıkel Ü., Candida utilis mayasiyla lipaz enzimi aktivitesinin farkli ortam koşullarinda incelenmesi, Journal of the Faculty of Engineering and Architecture of Gazi University, 30(3), 475-485, 2015.
  • Segel I. H., Enzyme kinetics, Wiley, New York, Rapid equilibrium partial and mixed-type inhibition, 161-226, 1975.
  • Sponza D.T., Işık M., Decolorization and inhibition kinetic of Direct Black 38 azo dye with granulated anaerobic sludge, Enzyme Microb. Technol., 34, 147-158, 2004.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Müjgan Okur 0000-0002-1533-9408

Nurdan Saraçoğlu 0000-0002-7180-1935

Zümriye Aksu 0000-0002-2812-5345

Publication Date April 7, 2020
Submission Date October 3, 2018
Acceptance Date February 1, 2020
Published in Issue Year 2020 Volume: 35 Issue: 3

Cite

APA Okur, M., Saraçoğlu, N., & Aksu, Z. (2020). Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : üreme ve inhibisyon kinetiği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1399-1408. https://doi.org/10.17341/gazimmfd.467099
AMA Okur M, Saraçoğlu N, Aksu Z. Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : üreme ve inhibisyon kinetiği. GUMMFD. April 2020;35(3):1399-1408. doi:10.17341/gazimmfd.467099
Chicago Okur, Müjgan, Nurdan Saraçoğlu, and Zümriye Aksu. “Candida Tropicalis Ile Sulu çözeltilerden Metal-Kompleks Boyar Madde Giderimi : üreme Ve Inhibisyon kinetiği”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no. 3 (April 2020): 1399-1408. https://doi.org/10.17341/gazimmfd.467099.
EndNote Okur M, Saraçoğlu N, Aksu Z (April 1, 2020) Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : üreme ve inhibisyon kinetiği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 3 1399–1408.
IEEE M. Okur, N. Saraçoğlu, and Z. Aksu, “Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : üreme ve inhibisyon kinetiği”, GUMMFD, vol. 35, no. 3, pp. 1399–1408, 2020, doi: 10.17341/gazimmfd.467099.
ISNAD Okur, Müjgan et al. “Candida Tropicalis Ile Sulu çözeltilerden Metal-Kompleks Boyar Madde Giderimi : üreme Ve Inhibisyon kinetiği”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/3 (April 2020), 1399-1408. https://doi.org/10.17341/gazimmfd.467099.
JAMA Okur M, Saraçoğlu N, Aksu Z. Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : üreme ve inhibisyon kinetiği. GUMMFD. 2020;35:1399–1408.
MLA Okur, Müjgan et al. “Candida Tropicalis Ile Sulu çözeltilerden Metal-Kompleks Boyar Madde Giderimi : üreme Ve Inhibisyon kinetiği”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 3, 2020, pp. 1399-08, doi:10.17341/gazimmfd.467099.
Vancouver Okur M, Saraçoğlu N, Aksu Z. Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : üreme ve inhibisyon kinetiği. GUMMFD. 2020;35(3):1399-408.