Araştırma Makalesi
BibTex RIS Kaynak Göster

Recycling of sewage sludge incineration ashes as construction material

Yıl 2020, Cilt: 35 Sayı: 3, 1647 - 1664, 07.04.2020
https://doi.org/10.17341/gazimmfd.544678

Öz

Kaynakça

  • [1] B. M. Cieslik, J. Namiesnik, and P. Konieczka, Review of sewage sludge management: standards, regulations and analytical methods, Journal of Cleaner Production, 90, 1-15, 2015.
  • [2] M. Kacprzak, E. Neczaj, K. Fijalkowski, A. Grobelak, A. Grosser, M. Worwag, A. Rorat, H. Brattebo, A. Almas, and B. R. Singh, Sewage sludge disposal strategies for sustainable development, Environmental Research, 156, 39-46, 2017.
  • [3] EC, EC (European Commission), Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land, Final Report, Part I, 2008. Available : <http://ec.europa.eu/environment/waste/sludge/pdf/part_i_report.pdf>, Accessed at 22.03.2019.
  • [4] O. Malerius and J. Werther, Modeling the adsorption of mercury in the flue gas of sewage sludge incineration, Chemical Engineering Journal, 96 (1-3), 197-205, 2003.
  • [5] M. Lundin, M. Olofsson, G. J. Pettersson, and H. Zetterlund, Environmental and economic assessment of sewage sludge handling options, Resources Conservation and Recycling, 41 (4), 255-278, 2004.
  • [6] D. Fytili and A. Zabaniotou, Utilization of sewage sludge in EU application of old and new methods - A review, Renewable & Sustainable Energy Reviews, 12 (1), 116-140, 2008.
  • [7] M. C. Samolada and A. A. Zabaniotou, Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece, Waste Management, 34, 411-420, 2014.
  • [8] S. Donatello and C. R. Cheeseman, Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review, Waste Management, 33 (11), 2328-2340, 2013.
  • [9] K. L. Lin, K. Y. Chiang, and D. F. Lin, Effect of heating temperature on the sintering characteristics of sewage sludge ash, Journal of Hazardous Materials, 128 (2-3), 175-181, 2006.
  • [10] I. Merino, L. F. Arevalo, and F. Romero, Preparation and characterization of ceramic products by thermal treatment of sewage sludge ashes mixed with different additives, Waste Management, 27 (12), 1829-1844, 2007.
  • [11] F. B. Brotons, P. Garces, J. Paya, and J. M. Saval, Portland cement systems with addition of sewage sludge ash. Application in concretes for the manufacture of blocks, Journal of Cleaner Production journal, 82 , 112-124 Contents, 2014.
  • [12] B. Krejcirikovaa, L. M. Ottosena, G. M. Kirkelunda, C. Rodea, and R. Peuhkuri, Characterization of sewage sludge ash and its effect on moisture physics of mortar, Journal of Building Engineering, 21, 396–403, 2019.
  • [13] J. S. Li, M. Z. Guo, Q. Xue, and C. S. Poon, Recycling of incinerated sewage sludge ash and cathode ray tube funnel glass in cement mortars, Journal of Cleaner Production, 152, 142-149, 2017.
  • [14] Y. L. Galiano, C. F. Pereira, and J. Vale, Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers, Journal of Hazardous Materials, 185 (1), 373-381, 2011.
  • [15] K. Fijalkowski, A. Rorat, A. Grobelak, and M. J. Kacprzak, The presence of contaminations in sewage sludge - The current situation, Journal of Environmental Management, 203 (3), 1126-1136, 2017.
  • [16] E. F. Barth, An Overview of the History, Present Status, and Future-Direction of Solidification Stabilization Technologies for Hazardous-Waste Treatment, Journal of Hazardous Materials, 24 (2-3), 103-109, 1990.
  • [17] J. G. Van Jaarsveld and J. S. Van Deventer, The effect of metal contaminants on the formation and properties of waste-based geopolymers, Critical Reviews in Environmental Science and Technology, 29 (8), 1189-1200, 1999.
  • [18] J. Davidovits, Geopolymers - Inorganic polymeric new materials, Journal of Thermal Analysis 37, 1633-1656, 1991.
  • [19] ASTM. ASTM standard C618-12a, 2012. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken, PA. Available: http://www.astm.org, Accessed at 23.02.2019
  • [20] ASTM. ASTM standard C204-11, 2011. Standard test methods for fineness of hydraulic cement by air-permeability apparatus. ASTM International, West Conshohocken, PA. Available: http://www.astm.org, Accessed at 22.03.2019.
  • [21] ASTM. ASTM standard C109/C109M-07, 2007. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM International, West Conshohocken, PA. Available: http://www.astm.org, Accessed at 22.02.2019.
  • [22] ADDDY Atıkların Düzenli Depolanmasına Dair Yönetmelik, 2010 Available: http://www.resmigazete.gov.tr/eskiler/2010/03/20100326-13.htm, Accessed at 22.02.2019
  • [23] EPA and U. S. E. P. Agency). EPA TCLP 1311, TOXICITY CHARACTERISTIC LEACHING PROCEDURE. Available: https://www.epa.gov/sites/production/files/2015-12/documents/1311.pdf, Accessed at 22.02.2019.
  • [24] C. H. Chen, I. J. Chiou, and K. S. Wang, Sintering effect on cement bonded sewage sludge ash, Cement & Concrete Composites, 28 (1), 26-32, 2006.
  • [25] P. Y. Mahieux, J. E. Aubert, M. Cyr, M. Coutand, and B. Husson, Quantitative mineralogical composition of complex mineral wastes - Contribution of the Rietveld method, Waste Management, 30 (3), 378-388, 2010.
  • [26] S. Yetkin and A. Cavdar, Doğal puzolan katkı oranının çimentonun dayanım, işlenebilirlik, katılaşma ve hacim genleşmesi özelliklerine etkisi, Fırat Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 17, 687-692, 2005.
  • [27] J. B. M. Dassekpo, X. Zha, and J. Zhan, Compressive strength performance of geopolymer paste derived from Completely Decomposed Granite (CDG) and partial fly ash replacement, Construction and Building Materials, 138, 195–203, 2017.
  • [28] E. Benhelal, G. Zahedi, E. Shamsaei, and A. Bahadori, Global strategies and potentials to curb CO2 emissions in cement industry, Journal of Cleaner Production, 51, 142-161, 2013.

Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı

Yıl 2020, Cilt: 35 Sayı: 3, 1647 - 1664, 07.04.2020
https://doi.org/10.17341/gazimmfd.544678

Öz

Bursa ili kentsel atıksu arıtma tesislerinde
oluşan arıtma çamurları, 2017 yılından itibaren Bursa Su ve Kanalizasyon
İdaresi’ne bağlı 400 ton/gün kapasiteli bir akışkan yataklı yakma tesisinde
yakılarak bertaraf edilmektedir. Yakma sürecinin sonunda her ay bertaraf
edilmeyi bekleyen ortalama 615 ton kül oluşmaktadır. Bu çalışmanın amacı çamur
yakma sürecinin sonunda oluşan atık çamur küllerinin yapı malzemesi olarak geri
kazanılıp kazanılamayacağını araştırmaktır. Bu amaçla çamur küllerine stabilizasyon/solidifikasyon
(S/S) ve jeopolimerizasyon teknolojileri uygulanmıştır. Bağlayıcı malzeme
olarak Portland çimentosu, termik santral uçucu külü ve mermer çamuru kullanılmıştır.
S/S örnekleri su, jeopolimer örnekleri 8MNaOH ve NaSilNaOH çözeltileriyle
aktive edilmiştir. Hazırlanan pasta örnekleri 28 günlük hava kürü sonunda basınç
dayanımı ve ağır metal sızma testlerine tabi tutulmuştur.  Çamur külü kullanılarak hazırlanan S/S
örneklerinde 21,8 MPa, jeopolimer örneklerinde ise 50,0 MPa düzeylerine ulaşan
basınç dayanım değerleri elde edilmiştir. Atık çamur külü içeren bazı
örneklerin basınç dayanım düzeylerinin, atık içermeyen kontrol örneklerinin
basınç dayanım düzeylerinden yüksek olması dikkat çekmiştir. Sızma testi
sonucunda çamur külüyle hazırlanan örneklerin tehlike sınır değerlerinin
oldukça altında kaldığı görülmüştür. Gerek sızma testi gerekse basınç dayanım
testi sonuçları, çamur küllerinin, yapı malzemesi olarak değerlendirilmesi
gereken bir potansiyel vadettiğini göstermektedir. 

Kaynakça

  • [1] B. M. Cieslik, J. Namiesnik, and P. Konieczka, Review of sewage sludge management: standards, regulations and analytical methods, Journal of Cleaner Production, 90, 1-15, 2015.
  • [2] M. Kacprzak, E. Neczaj, K. Fijalkowski, A. Grobelak, A. Grosser, M. Worwag, A. Rorat, H. Brattebo, A. Almas, and B. R. Singh, Sewage sludge disposal strategies for sustainable development, Environmental Research, 156, 39-46, 2017.
  • [3] EC, EC (European Commission), Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land, Final Report, Part I, 2008. Available : <http://ec.europa.eu/environment/waste/sludge/pdf/part_i_report.pdf>, Accessed at 22.03.2019.
  • [4] O. Malerius and J. Werther, Modeling the adsorption of mercury in the flue gas of sewage sludge incineration, Chemical Engineering Journal, 96 (1-3), 197-205, 2003.
  • [5] M. Lundin, M. Olofsson, G. J. Pettersson, and H. Zetterlund, Environmental and economic assessment of sewage sludge handling options, Resources Conservation and Recycling, 41 (4), 255-278, 2004.
  • [6] D. Fytili and A. Zabaniotou, Utilization of sewage sludge in EU application of old and new methods - A review, Renewable & Sustainable Energy Reviews, 12 (1), 116-140, 2008.
  • [7] M. C. Samolada and A. A. Zabaniotou, Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece, Waste Management, 34, 411-420, 2014.
  • [8] S. Donatello and C. R. Cheeseman, Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review, Waste Management, 33 (11), 2328-2340, 2013.
  • [9] K. L. Lin, K. Y. Chiang, and D. F. Lin, Effect of heating temperature on the sintering characteristics of sewage sludge ash, Journal of Hazardous Materials, 128 (2-3), 175-181, 2006.
  • [10] I. Merino, L. F. Arevalo, and F. Romero, Preparation and characterization of ceramic products by thermal treatment of sewage sludge ashes mixed with different additives, Waste Management, 27 (12), 1829-1844, 2007.
  • [11] F. B. Brotons, P. Garces, J. Paya, and J. M. Saval, Portland cement systems with addition of sewage sludge ash. Application in concretes for the manufacture of blocks, Journal of Cleaner Production journal, 82 , 112-124 Contents, 2014.
  • [12] B. Krejcirikovaa, L. M. Ottosena, G. M. Kirkelunda, C. Rodea, and R. Peuhkuri, Characterization of sewage sludge ash and its effect on moisture physics of mortar, Journal of Building Engineering, 21, 396–403, 2019.
  • [13] J. S. Li, M. Z. Guo, Q. Xue, and C. S. Poon, Recycling of incinerated sewage sludge ash and cathode ray tube funnel glass in cement mortars, Journal of Cleaner Production, 152, 142-149, 2017.
  • [14] Y. L. Galiano, C. F. Pereira, and J. Vale, Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers, Journal of Hazardous Materials, 185 (1), 373-381, 2011.
  • [15] K. Fijalkowski, A. Rorat, A. Grobelak, and M. J. Kacprzak, The presence of contaminations in sewage sludge - The current situation, Journal of Environmental Management, 203 (3), 1126-1136, 2017.
  • [16] E. F. Barth, An Overview of the History, Present Status, and Future-Direction of Solidification Stabilization Technologies for Hazardous-Waste Treatment, Journal of Hazardous Materials, 24 (2-3), 103-109, 1990.
  • [17] J. G. Van Jaarsveld and J. S. Van Deventer, The effect of metal contaminants on the formation and properties of waste-based geopolymers, Critical Reviews in Environmental Science and Technology, 29 (8), 1189-1200, 1999.
  • [18] J. Davidovits, Geopolymers - Inorganic polymeric new materials, Journal of Thermal Analysis 37, 1633-1656, 1991.
  • [19] ASTM. ASTM standard C618-12a, 2012. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken, PA. Available: http://www.astm.org, Accessed at 23.02.2019
  • [20] ASTM. ASTM standard C204-11, 2011. Standard test methods for fineness of hydraulic cement by air-permeability apparatus. ASTM International, West Conshohocken, PA. Available: http://www.astm.org, Accessed at 22.03.2019.
  • [21] ASTM. ASTM standard C109/C109M-07, 2007. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM International, West Conshohocken, PA. Available: http://www.astm.org, Accessed at 22.02.2019.
  • [22] ADDDY Atıkların Düzenli Depolanmasına Dair Yönetmelik, 2010 Available: http://www.resmigazete.gov.tr/eskiler/2010/03/20100326-13.htm, Accessed at 22.02.2019
  • [23] EPA and U. S. E. P. Agency). EPA TCLP 1311, TOXICITY CHARACTERISTIC LEACHING PROCEDURE. Available: https://www.epa.gov/sites/production/files/2015-12/documents/1311.pdf, Accessed at 22.02.2019.
  • [24] C. H. Chen, I. J. Chiou, and K. S. Wang, Sintering effect on cement bonded sewage sludge ash, Cement & Concrete Composites, 28 (1), 26-32, 2006.
  • [25] P. Y. Mahieux, J. E. Aubert, M. Cyr, M. Coutand, and B. Husson, Quantitative mineralogical composition of complex mineral wastes - Contribution of the Rietveld method, Waste Management, 30 (3), 378-388, 2010.
  • [26] S. Yetkin and A. Cavdar, Doğal puzolan katkı oranının çimentonun dayanım, işlenebilirlik, katılaşma ve hacim genleşmesi özelliklerine etkisi, Fırat Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 17, 687-692, 2005.
  • [27] J. B. M. Dassekpo, X. Zha, and J. Zhan, Compressive strength performance of geopolymer paste derived from Completely Decomposed Granite (CDG) and partial fly ash replacement, Construction and Building Materials, 138, 195–203, 2017.
  • [28] E. Benhelal, G. Zahedi, E. Shamsaei, and A. Bahadori, Global strategies and potentials to curb CO2 emissions in cement industry, Journal of Cleaner Production, 51, 142-161, 2013.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Berna Yiğit Bu kişi benim 0000-0003-4865-9704

Güray Salihoğlu 0000-0003-0714-048X

Ali Mardani-aghabaglou 0000-0003-0326-5015

Nezih Kamil Salihoğlu 0000-0002-7730-776X

Süleyman Özen 0000-0001-5522-427X

Yayımlanma Tarihi 7 Nisan 2020
Gönderilme Tarihi 26 Mart 2019
Kabul Tarihi 6 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 35 Sayı: 3

Kaynak Göster

APA Yiğit, B., Salihoğlu, G., Mardani-aghabaglou, A., Salihoğlu, N. K., vd. (2020). Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1647-1664. https://doi.org/10.17341/gazimmfd.544678
AMA Yiğit B, Salihoğlu G, Mardani-aghabaglou A, Salihoğlu NK, Özen S. Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. GUMMFD. Nisan 2020;35(3):1647-1664. doi:10.17341/gazimmfd.544678
Chicago Yiğit, Berna, Güray Salihoğlu, Ali Mardani-aghabaglou, Nezih Kamil Salihoğlu, ve Süleyman Özen. “Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin Yapı Malzemesi Olarak Geri kazanımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, sy. 3 (Nisan 2020): 1647-64. https://doi.org/10.17341/gazimmfd.544678.
EndNote Yiğit B, Salihoğlu G, Mardani-aghabaglou A, Salihoğlu NK, Özen S (01 Nisan 2020) Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 3 1647–1664.
IEEE B. Yiğit, G. Salihoğlu, A. Mardani-aghabaglou, N. K. Salihoğlu, ve S. Özen, “Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı”, GUMMFD, c. 35, sy. 3, ss. 1647–1664, 2020, doi: 10.17341/gazimmfd.544678.
ISNAD Yiğit, Berna vd. “Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin Yapı Malzemesi Olarak Geri kazanımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/3 (Nisan 2020), 1647-1664. https://doi.org/10.17341/gazimmfd.544678.
JAMA Yiğit B, Salihoğlu G, Mardani-aghabaglou A, Salihoğlu NK, Özen S. Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. GUMMFD. 2020;35:1647–1664.
MLA Yiğit, Berna vd. “Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin Yapı Malzemesi Olarak Geri kazanımı”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 35, sy. 3, 2020, ss. 1647-64, doi:10.17341/gazimmfd.544678.
Vancouver Yiğit B, Salihoğlu G, Mardani-aghabaglou A, Salihoğlu NK, Özen S. Atıksu arıtma çamurlarının yakılmasıyla oluşan küllerin yapı malzemesi olarak geri kazanımı. GUMMFD. 2020;35(3):1647-64.