Research Article
BibTex RIS Cite

Removal of Natural Organic Matters from Aquatic Environment by Catalytic Ozonation Processes with Silver Nanoparticles: Determination of Ozonation Products

Year 2020, Volume: 35 Issue: 3, 1285 - 1296, 07.04.2020
https://doi.org/10.17341/gazimmfd.578481

Abstract

In catalytic ozonation processes, the ultimate aim is to oxidize the pollutant to the end product, but as a result of the chain oxidation reactions, some intermediates cannot be oxidized to the end product and after disinfection of the effluent waters, some toxic/carcinogenic/mutagenic intermediates may occur. Although many studies about catalytic ozonation processes, focused on the operating cost and the removal of target pollutants, the formation of intermediate products were not pursued. Therefore, the usage of catalytic ozonation processes as a final disposal method is still being questioned. 

Here, treatment of synthetically prepared humic acid solutions which represent natural organic materials in surface waters, by silver based nanoparticles enriched with montmorillonite catalyzed ozonation processes was investigated. Degradation of natural organic matter and changes in aliphatic-aromatic structure were observed in treatment studies where catalyst doses were changed. Trihalomethane (THM) and Haloacetic Acid (HAA) species formed by disinfection process with chlorine were analyzed quantitatively and other oxidation intermediates were determined qualitatively.


References

  • Li, C., Wang, D., Xu, X. ve Wang, Z., “Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation”, Science of The Total Environment, Cilt 587, 177-184, 2017.
  • Hayward, K., “Drinking water contaminant hit-list for US EPA”, Water, Cilt 21, No 4, 1998.
  • Bel, T., Arslan, C. ve Baydoğan, N., “PMMA/Mikroküre/Montmorillonit Nanokompozit ve PMMA/Mikroküre/Halloysite Nanokompozitin Atom Transfer Radikal Polimerizasyon Tekniği ile Üretilmesi ve Mekanik Özelliklerinin Karşılaştırmalı Olarak İncelenmesi”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 2018, No 2018, 2018.
  • Altınten, A. ve Orman, F., “SICAKLIK KONTROLÜ İLE POLİSTİREN/KİL NANOKOMPOZİT SENTEZİ VE KARAKTERİZASYONU”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 32, No 2.
  • Bayhan, Y.K. ve Değermenci, G.D., “Kozmetik atık sularından fenton prosesiyle organik madde gideriminin ve kinetiğinin incelenmesi”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 32, No 1, 2017.
  • Palas, B., Ersöz, G. ve Atalay, S., “Çevre dostu atıksu arıtımı yöntemleri ile mikrokirletici giderimi kinetiğinin incelenmesi: LaFeO3 perovskit tipi katalizör varlığında metilen mavisinin Fenton benzeri oksidasyonu”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 32, No 4, 2017.
  • Bing, J., Hu, C. ve Zhang, L., “Enhanced mineralization of pharmaceuticals by surface oxidation over mesoporous γ-Ti-Al 2 O 3 suspension with ozone”, Applied Catalysis B: Environmental, Cilt 202, 118-126, 2017.
  • Liu, Y., Wang, S., Gong, W., Chen, Z., Liu, H., Bu, Y. ve Zhang, Y., “Heterogeneous catalytic ozonation of p-chloronitrobenzene (pCNB) in water with iron silicate doped hydroxylation iron as catalyst”, Catalysis Communications, Cilt 89, 81-85, 2017.
  • Vosoughi, M., Fatehifar, E., Derafshi, S. ve Rostamizadeh, M., “High efficient treatment of the petrochemical phenolic effluent using spent catalyst: Experimental and optimization”, Journal of Environmental Chemical Engineering, Cilt 5, No 2, 2024-2031, 2017.
  • Bai, H., Zhou, J., Zhang, H. ve Tang, G., “Enhanced adsorbability and photocatalytic activity of TiO 2-graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase”, Colloids and Surfaces B: Biointerfaces, Cilt 150, 68-77, 2017.
  • Gao, G., Shen, J., Chu, W., Chen, Z. ve Yuan, L., “Mechanism of enhanced diclofenac mineralization by catalytic ozonation over iron silicate-loaded pumice”, Separation and Purification Technology, Cilt 173, 55-62, 2017.
  • Faria, P., Órfão, J. ve Pereira, M., “Catalytic ozonation of sulfonated aromatic compounds in the presence of activated carbon”, Applied Catalysis B: Environmental, Cilt 83, No 1, 150-159, 2008.
  • Rao, G., Zhao, H., Chen, J., Deng, W., Jung, B., Abdel-Wahab, A., Batchelor, B. ve Li, Y., “FeOOH and Fe 2 O 3 co-grafted TiO 2 photocatalysts for bisphenol A degradation in water”, Catalysis Communications, Cilt 97, 125-129, 2017.
  • Kwon, D.W., Kim, G.J., Won, J.M. ve Hong, S.C., “Influence of Mn valence state and characteristic of TiO2 on the performance of Mn-Ti catalysts in ozone decomposition”, Environmental Technology, No just-accepted, 1-53, 2017.
  • Kopaç, T. ve Kulaç, E., “OVALBÜMİNİN TİTANYUM OKSİT VE ZİRKONYA YÜZEYLERLERLE ETKİLEŞİMİ VE ADSORPSİYONUNUN ARAŞTIRILMASI”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 32, No 2, 2017.
  • Dewil, R., Mantzavinos, D., Poulios, I. ve Rodrigo, M.A., “New perspectives for Advanced Oxidation Processes”, Journal of environmental management, Cilt 195, 93-99, 2017.
  • Turkay, O., Inan, H. ve Dimoglo, A., “Experimental and theoretical investigations of CuO-catalyzed ozonation of humic acid”, Separation and Purification Technology, Cilt 134, 110-116, 2014.
  • Altınışık, A., Seki, Y. ve Yurdakoc, K., “Preparation and characterization of chitosan/KSF biocomposite film”, Polymer Composites, Cilt 30, No 8, 1035-1042, 2009.
  • Association, A.P.H. ve Association, A.W.W., Standard methods for the examination of water and wastewater, American public health association, 1989.
  • International, A., Annual book of ASTM standards, ASTM International, 2004.
  • Li, C., Wang, D., Li, N., Luo, Q., Xu, X. ve Wang, Z., “Identifying unknown by-products in drinking water using comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry and in silico toxicity assessment”, Chemosphere, Cilt 163, 535-543, 2016.
  • Bu, Q., Wang, D., Wang, Z. ve Gu, J., “Identification and ranking of the risky organic contaminants in the source water of the Danjiangkou reservoir”, Frontiers of Environmental Science & Engineering, Cilt 8, No 1, 42-53, 2014.
  • (NIST), T.N.I.o.S.a.T. Standard Reference Data Program. Mass spectral library 2008; URL: https://www.nist.gov.
  • Wiley. Mass Spectral Library. 2007; URL: https://www.wiley.com.
  • Wang, H., Zhu, Y., Hu, C. ve Hu, X., “Treatment of NOM fractions of reservoir sediments: Effect of UV and chlorination on formation of DBPs”, Separation and Purification Technology, Cilt 154, 228-235, 2015.
  • He, Y., Sutton, N.B., Rijnaarts, H.H. ve Langenhoff, A.A., “Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation”, Applied Catalysis B: Environmental, Cilt 182, 132-141, 2016.
  • Mayer, B.K., Daugherty, E. ve Abbaszadegan, M., “Disinfection byproduct formation resulting from settled, filtered, and finished water treated by titanium dioxide photocatalysis”, Chemosphere, Cilt 117, 72-78, 2014.
  • Meng, Y., Wang, Y., Han, Q., Xue, N., Sun, Y., Gao, B. ve Li, Q., “Trihalomethane (THM) formation from synergic disinfection of biologically treated municipal wastewater: Effect of ultraviolet (UV) irradiation and titanium dioxide photocatalysis on dissolve organic matter fractions”, Chemical Engineering Journal, Cilt 303, 252-260, 2016.
  • Staehelin, J. ve Hoigne, J., “Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions”, Environmental science & technology, Cilt 19, No 12, 1206-1213, 1985.
  • Paillard, H., Legube, B., Bourbigot, M. ve Lefebvre, E., “Iron and manganese removal with ozonation in the presence of humic substances”, Ozone: science & engineering, Cilt 11, No 1, 93-113, 1989.
  • Chiang, P.-C., Chang, E. ve Liang, C., “NOM characteristics and treatabilities of ozonation processes”, Chemosphere, Cilt 46, No 6, 929-936, 2002.
  • Chowdhury, S., Champagne, P. ve McLellan, P.J., “Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review”, Science of the Total Environment, Cilt 407, No 14, 4189-4206, 2009.
  • Alexandrou, L., Meehan, B.J. ve Jones, O.A., “Regulated and emerging disinfection by-products in recycled waters”, Science of the Total Environment, Cilt 637, 1607-1616, 2018.
  • Alver, A. ve Kılıç, A., “Catalytic Ozonation by Iron Coated Pumice for the Degradation of Natural Organic Matters”, Catalysts, Cilt 8, No 5, 219, 2018.

Gümüş nanopartiküller eşliğinde katalitik ozonlama prosesleri ile sucul ortamdan doğal organik maddelerin giderimi: Ozonlama ürünlerinin belirlenmesi

Year 2020, Volume: 35 Issue: 3, 1285 - 1296, 07.04.2020
https://doi.org/10.17341/gazimmfd.578481

Abstract

Katalitik ozonlama proseslerinde nihai hedef kirleticinin son ürüne okside edilmesidir; fakat zincirleme oksidasyon reaksiyonları sonucunda bazı ara ürünler son ürüne kadar okside olamamaktadır. Bu oksidasyon ara ürünlerinin dezenfeksiyon işlemine tabi tutulması sonrasında ise daha toksik/kanserojenik/mutajenik ara ürünler meydana gelebilmektedir. Katalitik ozonlama prosesleri üzerine literatürde yapılan birçok çalışmada “hedef kirleticilerin” giderim verimliliği ve giderim maliyeti üzerine yoğunlaşılmış olsa da oluşan ara ürünler çoğu çalışmada takip edilmemiştir. Bu sebeple katalitik ozonlama proseslerinin nihai bertaraf yöntemi olarak kullanılabilirliği halen sorgulanmaktadır. 
Bu çalışmada, yüzeysel sulardaki doğal organik maddeleri temsilen sentetik olarak hazırlanmış hümik asit çözeltilerinin gümüş bazlı nanopartiküllerle zenginleştirilmiş montmorillonit katalizörlüğünde ozonlama prosesleri ile arıtılabilirliği araştırılmıştır. Katalizör dozlarının değiştirildiği arıtım çalışmalarında doğal organik maddenin bozunumu ve alifatik-aromatik yapısındaki değişimleri izlenilmiştir. Arıtma işlemi sonrasında çıkış suları klorla dezenfeksiyon işlemine tabi tutularak oluşan Trihalometan (THM) ve Haloasetik Asit (HAA) türleri kantitatif olarak diğer oksidasyon ara ürünleri ise kalitatif olarak tespit edilmiştir.

References

  • Li, C., Wang, D., Xu, X. ve Wang, Z., “Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation”, Science of The Total Environment, Cilt 587, 177-184, 2017.
  • Hayward, K., “Drinking water contaminant hit-list for US EPA”, Water, Cilt 21, No 4, 1998.
  • Bel, T., Arslan, C. ve Baydoğan, N., “PMMA/Mikroküre/Montmorillonit Nanokompozit ve PMMA/Mikroküre/Halloysite Nanokompozitin Atom Transfer Radikal Polimerizasyon Tekniği ile Üretilmesi ve Mekanik Özelliklerinin Karşılaştırmalı Olarak İncelenmesi”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 2018, No 2018, 2018.
  • Altınten, A. ve Orman, F., “SICAKLIK KONTROLÜ İLE POLİSTİREN/KİL NANOKOMPOZİT SENTEZİ VE KARAKTERİZASYONU”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 32, No 2.
  • Bayhan, Y.K. ve Değermenci, G.D., “Kozmetik atık sularından fenton prosesiyle organik madde gideriminin ve kinetiğinin incelenmesi”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 32, No 1, 2017.
  • Palas, B., Ersöz, G. ve Atalay, S., “Çevre dostu atıksu arıtımı yöntemleri ile mikrokirletici giderimi kinetiğinin incelenmesi: LaFeO3 perovskit tipi katalizör varlığında metilen mavisinin Fenton benzeri oksidasyonu”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 32, No 4, 2017.
  • Bing, J., Hu, C. ve Zhang, L., “Enhanced mineralization of pharmaceuticals by surface oxidation over mesoporous γ-Ti-Al 2 O 3 suspension with ozone”, Applied Catalysis B: Environmental, Cilt 202, 118-126, 2017.
  • Liu, Y., Wang, S., Gong, W., Chen, Z., Liu, H., Bu, Y. ve Zhang, Y., “Heterogeneous catalytic ozonation of p-chloronitrobenzene (pCNB) in water with iron silicate doped hydroxylation iron as catalyst”, Catalysis Communications, Cilt 89, 81-85, 2017.
  • Vosoughi, M., Fatehifar, E., Derafshi, S. ve Rostamizadeh, M., “High efficient treatment of the petrochemical phenolic effluent using spent catalyst: Experimental and optimization”, Journal of Environmental Chemical Engineering, Cilt 5, No 2, 2024-2031, 2017.
  • Bai, H., Zhou, J., Zhang, H. ve Tang, G., “Enhanced adsorbability and photocatalytic activity of TiO 2-graphene composite for polycyclic aromatic hydrocarbons removal in aqueous phase”, Colloids and Surfaces B: Biointerfaces, Cilt 150, 68-77, 2017.
  • Gao, G., Shen, J., Chu, W., Chen, Z. ve Yuan, L., “Mechanism of enhanced diclofenac mineralization by catalytic ozonation over iron silicate-loaded pumice”, Separation and Purification Technology, Cilt 173, 55-62, 2017.
  • Faria, P., Órfão, J. ve Pereira, M., “Catalytic ozonation of sulfonated aromatic compounds in the presence of activated carbon”, Applied Catalysis B: Environmental, Cilt 83, No 1, 150-159, 2008.
  • Rao, G., Zhao, H., Chen, J., Deng, W., Jung, B., Abdel-Wahab, A., Batchelor, B. ve Li, Y., “FeOOH and Fe 2 O 3 co-grafted TiO 2 photocatalysts for bisphenol A degradation in water”, Catalysis Communications, Cilt 97, 125-129, 2017.
  • Kwon, D.W., Kim, G.J., Won, J.M. ve Hong, S.C., “Influence of Mn valence state and characteristic of TiO2 on the performance of Mn-Ti catalysts in ozone decomposition”, Environmental Technology, No just-accepted, 1-53, 2017.
  • Kopaç, T. ve Kulaç, E., “OVALBÜMİNİN TİTANYUM OKSİT VE ZİRKONYA YÜZEYLERLERLE ETKİLEŞİMİ VE ADSORPSİYONUNUN ARAŞTIRILMASI”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 32, No 2, 2017.
  • Dewil, R., Mantzavinos, D., Poulios, I. ve Rodrigo, M.A., “New perspectives for Advanced Oxidation Processes”, Journal of environmental management, Cilt 195, 93-99, 2017.
  • Turkay, O., Inan, H. ve Dimoglo, A., “Experimental and theoretical investigations of CuO-catalyzed ozonation of humic acid”, Separation and Purification Technology, Cilt 134, 110-116, 2014.
  • Altınışık, A., Seki, Y. ve Yurdakoc, K., “Preparation and characterization of chitosan/KSF biocomposite film”, Polymer Composites, Cilt 30, No 8, 1035-1042, 2009.
  • Association, A.P.H. ve Association, A.W.W., Standard methods for the examination of water and wastewater, American public health association, 1989.
  • International, A., Annual book of ASTM standards, ASTM International, 2004.
  • Li, C., Wang, D., Li, N., Luo, Q., Xu, X. ve Wang, Z., “Identifying unknown by-products in drinking water using comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry and in silico toxicity assessment”, Chemosphere, Cilt 163, 535-543, 2016.
  • Bu, Q., Wang, D., Wang, Z. ve Gu, J., “Identification and ranking of the risky organic contaminants in the source water of the Danjiangkou reservoir”, Frontiers of Environmental Science & Engineering, Cilt 8, No 1, 42-53, 2014.
  • (NIST), T.N.I.o.S.a.T. Standard Reference Data Program. Mass spectral library 2008; URL: https://www.nist.gov.
  • Wiley. Mass Spectral Library. 2007; URL: https://www.wiley.com.
  • Wang, H., Zhu, Y., Hu, C. ve Hu, X., “Treatment of NOM fractions of reservoir sediments: Effect of UV and chlorination on formation of DBPs”, Separation and Purification Technology, Cilt 154, 228-235, 2015.
  • He, Y., Sutton, N.B., Rijnaarts, H.H. ve Langenhoff, A.A., “Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation”, Applied Catalysis B: Environmental, Cilt 182, 132-141, 2016.
  • Mayer, B.K., Daugherty, E. ve Abbaszadegan, M., “Disinfection byproduct formation resulting from settled, filtered, and finished water treated by titanium dioxide photocatalysis”, Chemosphere, Cilt 117, 72-78, 2014.
  • Meng, Y., Wang, Y., Han, Q., Xue, N., Sun, Y., Gao, B. ve Li, Q., “Trihalomethane (THM) formation from synergic disinfection of biologically treated municipal wastewater: Effect of ultraviolet (UV) irradiation and titanium dioxide photocatalysis on dissolve organic matter fractions”, Chemical Engineering Journal, Cilt 303, 252-260, 2016.
  • Staehelin, J. ve Hoigne, J., “Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions”, Environmental science & technology, Cilt 19, No 12, 1206-1213, 1985.
  • Paillard, H., Legube, B., Bourbigot, M. ve Lefebvre, E., “Iron and manganese removal with ozonation in the presence of humic substances”, Ozone: science & engineering, Cilt 11, No 1, 93-113, 1989.
  • Chiang, P.-C., Chang, E. ve Liang, C., “NOM characteristics and treatabilities of ozonation processes”, Chemosphere, Cilt 46, No 6, 929-936, 2002.
  • Chowdhury, S., Champagne, P. ve McLellan, P.J., “Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review”, Science of the Total Environment, Cilt 407, No 14, 4189-4206, 2009.
  • Alexandrou, L., Meehan, B.J. ve Jones, O.A., “Regulated and emerging disinfection by-products in recycled waters”, Science of the Total Environment, Cilt 637, 1607-1616, 2018.
  • Alver, A. ve Kılıç, A., “Catalytic Ozonation by Iron Coated Pumice for the Degradation of Natural Organic Matters”, Catalysts, Cilt 8, No 5, 219, 2018.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Alper Alver 0000-0003-2734-8544

Aylin Altınışık Tağaç 0000-0002-1813-7238

Ahmet Kılıç 0000-0002-2365-3093

Publication Date April 7, 2020
Submission Date June 16, 2019
Acceptance Date January 24, 2020
Published in Issue Year 2020 Volume: 35 Issue: 3

Cite

APA Alver, A., Altınışık Tağaç, A., & Kılıç, A. (2020). Gümüş nanopartiküller eşliğinde katalitik ozonlama prosesleri ile sucul ortamdan doğal organik maddelerin giderimi: Ozonlama ürünlerinin belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1285-1296. https://doi.org/10.17341/gazimmfd.578481
AMA Alver A, Altınışık Tağaç A, Kılıç A. Gümüş nanopartiküller eşliğinde katalitik ozonlama prosesleri ile sucul ortamdan doğal organik maddelerin giderimi: Ozonlama ürünlerinin belirlenmesi. GUMMFD. April 2020;35(3):1285-1296. doi:10.17341/gazimmfd.578481
Chicago Alver, Alper, Aylin Altınışık Tağaç, and Ahmet Kılıç. “Gümüş nanopartiküller eşliğinde Katalitik Ozonlama Prosesleri Ile Sucul Ortamdan doğal Organik Maddelerin Giderimi: Ozonlama ürünlerinin Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no. 3 (April 2020): 1285-96. https://doi.org/10.17341/gazimmfd.578481.
EndNote Alver A, Altınışık Tağaç A, Kılıç A (April 1, 2020) Gümüş nanopartiküller eşliğinde katalitik ozonlama prosesleri ile sucul ortamdan doğal organik maddelerin giderimi: Ozonlama ürünlerinin belirlenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 3 1285–1296.
IEEE A. Alver, A. Altınışık Tağaç, and A. Kılıç, “Gümüş nanopartiküller eşliğinde katalitik ozonlama prosesleri ile sucul ortamdan doğal organik maddelerin giderimi: Ozonlama ürünlerinin belirlenmesi”, GUMMFD, vol. 35, no. 3, pp. 1285–1296, 2020, doi: 10.17341/gazimmfd.578481.
ISNAD Alver, Alper et al. “Gümüş nanopartiküller eşliğinde Katalitik Ozonlama Prosesleri Ile Sucul Ortamdan doğal Organik Maddelerin Giderimi: Ozonlama ürünlerinin Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/3 (April 2020), 1285-1296. https://doi.org/10.17341/gazimmfd.578481.
JAMA Alver A, Altınışık Tağaç A, Kılıç A. Gümüş nanopartiküller eşliğinde katalitik ozonlama prosesleri ile sucul ortamdan doğal organik maddelerin giderimi: Ozonlama ürünlerinin belirlenmesi. GUMMFD. 2020;35:1285–1296.
MLA Alver, Alper et al. “Gümüş nanopartiküller eşliğinde Katalitik Ozonlama Prosesleri Ile Sucul Ortamdan doğal Organik Maddelerin Giderimi: Ozonlama ürünlerinin Belirlenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 3, 2020, pp. 1285-96, doi:10.17341/gazimmfd.578481.
Vancouver Alver A, Altınışık Tağaç A, Kılıç A. Gümüş nanopartiküller eşliğinde katalitik ozonlama prosesleri ile sucul ortamdan doğal organik maddelerin giderimi: Ozonlama ürünlerinin belirlenmesi. GUMMFD. 2020;35(3):1285-96.