Research Article
PDF Mendeley EndNote BibTex Cite

Investigation of mechanical properties of electroless nickel plated micro-lattice structures

Year 2020, Volume 35, Issue 4, 1783 - 1798, 21.07.2020
https://doi.org/10.17341/gazimmfd.586438

Abstract

In this study, mechanical properties of electroless nickel coated micro lattice structures were parametrically studied with both experimental and finite element methods. The micro lattice structures are produced of micro struts with a diameter of approximately 200 µm by selective laser melting (SLM) and are made of 316L stainless steel in the form of body centered cubic (BCC) structure. With electroless nickel coating method, a coating thickness of 17 µm was obtained and as a result, compression tests showed a 50% increase in specific elasticity modules and a 75% increase in specific strength for micro lattice structures. The effects of coating thickness and cell size on the mechanical performance of micro lattice structures were investigated by finite element method. Material parameters required for finite element method were obtained by using nano-indentation tests on the coating and inverse finite element algorithms. Studies showed that; The mechanical and failure properties of the coating material have a significant effect on improving the mechanical properties of the coated micro lattices. As a result, it was determined that, with higher the specific strength and ductility of the coating material, higher mechanical properties of the stainless-steel micro lattice structures can be achieved.


References

  • Xiong J., Mines R., Ghosh R., Vaziri A., Ma L., Ohrndorf A., ... & Wu L., Advanced micro‐lattice materials, Adv. Eng. Mater., 17(9), 1253-1264, 2015.
  • Rashed M. G., Ashraf M., Mines R. A. W., Hazell P. J., Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications, Materials & Design, 95, 518-533, 2016.
  • Ushijima K., Cantwell W. J., Mines R. A. W., Tsopanos S., Smith M., An investigation into the compressive properties of stainless steel micro-lattice structures, Journal of Sandwich Structures & Materials, 13(3), 303-329, 2011.
  • Gümrük R., & Mines R. A. W., Compressive behaviour of stainless steel micro-lattice structures, International Journal of Mechanical Sciences, 68, 125-139, 2013.
  • Gümrük R., Mines R. A. W., & Karadeniz S., Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions, Mater. Sci. Eng. A, 586, 392-406. 2013.
  • Ozdemir Z., Hernandez-Nava E., Tyas A., Warren J. A., Fay S. D., Goodall R., ... Askes H., Energy absorption in lattice structures in dynamics: Experiments, International Journal of Impact Engineering, 89, 49-61, 2016.
  • Schaedler T. A., Jacobsen A. J., Torrents A., Sorensen A. E., Lian J., Greer J. R., ... Carter W. B., Ultralight metallic microlattices, Science, 334(6058), 962-965, 2011.
  • Schaedler T. A., Ro C. J., Sorensen A. E., Eckel Z., Yang S. S., Carter W. B., Jacobse A. J., Designing metallic microlattices for energy absorber applications, Adv. Eng. Mater., 16(3), 276-283, 2014.
  • Bouwhuis B. A., Ronis T., McCrea J. L., Palumbo G., Hibbard G. D., Structural nanocrystalline Ni coatings on periodic cellular steel, Composites Science and Technology, 69(3-4), 385-390, 2009.
  • Sudagar J., Lian J., Sha W., Electroless nickel, alloy, composite and nano coatings–A critical review, J. Alloys Compd., 571, 183-204, 2013.
  • Oliver W. C., Pharr G. M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7(6), 1564-1583, 1992.
  • Liu R., Li X., Wang H., Ding G., Yang C., Yang Z., A new method for the micro-tensile testing of thin film. In Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008. 3rd IEEE International Conference on. IEEE, 112-115, January 2008.
  • Read D. T., Dally J. W., A new method for measuring the strength and ductility of thin films, J. Mater. Res., 8(7), 1542-1549, 1993.
  • Dehm G., Wörgötter H. P., Cazottes S., Purswani J. M., Gall D., Mitterer C., Kiener, D., Can micro-compression testing provide stress–strain data for thin films?: A comparative study using Cu, VN, TiN and W coatings, Thin Solid Films, 518(5), 1517-1521, 2009.
  • Jeong H. J., Lim N. S., Lee B. H., Park C. G., Lee S., Kang S. H., Lee H. W., Kim H. S., Local and Global Stress–Strain Behaviors of Transformation-Induced Plasticity Steel Using the Combined Nanoindentation and Finite Element Analysis Method, Metall. Mater. Trans. A, 45(13), 6008–6015, 2014.
  • Bouzakis, K. D., Michailidis, N., An accurate and fast approach for determining materials stress–strain curves by nanoindentation and its FEM-based simulation, Mater. Charact., 56(2), 147-157, 2006.
  • Li Y., Stevens P., Sun M., Zhang C., Wang, W., Improvement of predicting mechanical properties from spherical indentation test, International Journal of Mechanical Sciences, 117, 182-196, 2016.
  • De Bono D. M., Inverse Analysis and Microstructure Effects in Nanoindentation Testing, Doktora Tezi, University of Surrey, United Kingdom, 2017.
  • Tsopanos S., Mines R. A. W., McKown S., Shen Y., Cantwell W. J., Brooks W., Sutcliffe C. J., The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures, Journal of Manufacturing Science and Engineering, 132(4), 041011, 2010.
  • Poon B., Rittel D., Ravichandran G., An analysis of nanoindentation in linearly elastic solids, International Journal of Solids and Structures, 45(24), 6018-6033, 2008.
  • De Bono D. M., London T., Baker M., Whiting M. J., A robust inverse analysis method to estimate the local tensile properties of heterogeneous materials from nano-indentation data, International Journal of Mechanical Sciences, 123, 162–176, 2017.
  • Gümrük R., Uşun A., Mines R., Enhancement of the Mechanical Performance of Stainless-Steel Micro Lattice Structures Using Electroless Plated Nickel Coatings, Proceedings, Vol. 2, No. 8, p. 494, 2018.

Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi

Year 2020, Volume 35, Issue 4, 1783 - 1798, 21.07.2020
https://doi.org/10.17341/gazimmfd.586438

Abstract

Bu çalışmada, akımsız nikel ile kaplanan mikro kafes yapıların mekanik özellikleri hem deneysel hem de sonlu elemanlar yöntemi kullanılarak parametrik olarak çalışılmıştır. Kullanılan mikro kafes yapılar seçici lazer ergitme (SLM) yöntemi ile yaklaşık 200µm çapında mikro tellerden oluşmakta olup, 316L paslanmaz çelik malzemeden hacim merkezli kübik (BCC) yapı şeklinde üretilmiştir. Uygulanan akımsız nikel kaplama yöntemi ile yaklaşık olarak 17 µm kaplama kalınlığı elde edilmiş ve bunun sonucunda gerçekleştirilen basma testleri sonucunda mikro kafes yapıların spesifik elastisite modüllerinde yaklaşık %50 ve spesifik mukavemetlerinde ise %75 artış elde edilmiştir. Kaplama kalınlığının ve hücre boyutu arasındaki ilişkilerin mikro kafes yapıların mekanik performansları üzerine etkileri sonlu elemanlar analizleri ile parametrik çalışmalar ile incelenmiştir. Sonlu elemanlar yönteminde malzeme modelleri için gerekli malzeme parametreleri kaplama için nano-indentasyon testler kullanılarak ve özgün olarak geliştirilen tersine sonlu elemanlar algoritması ile elde edilmiştir. Yapılan çalışmalar gösterdi ki; kaplama malzemesinin mekanik ve hasar özelliklerinin kaplanmış mikro kafeslerin mekanik özelliklerinin iyileştirilmesinde çok ciddi bir etkiye sahiptir. Sonuç olarak kaplama malzemesinin spesifik mukavemeti ve sünekliği ne kadar yüksek ise paslanmaz çelik mikro kafes yapıların spesifik mekanik özelliklerinin o derecede iyileşme göstereceği belirlenmiştir.


References

  • Xiong J., Mines R., Ghosh R., Vaziri A., Ma L., Ohrndorf A., ... & Wu L., Advanced micro‐lattice materials, Adv. Eng. Mater., 17(9), 1253-1264, 2015.
  • Rashed M. G., Ashraf M., Mines R. A. W., Hazell P. J., Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications, Materials & Design, 95, 518-533, 2016.
  • Ushijima K., Cantwell W. J., Mines R. A. W., Tsopanos S., Smith M., An investigation into the compressive properties of stainless steel micro-lattice structures, Journal of Sandwich Structures & Materials, 13(3), 303-329, 2011.
  • Gümrük R., & Mines R. A. W., Compressive behaviour of stainless steel micro-lattice structures, International Journal of Mechanical Sciences, 68, 125-139, 2013.
  • Gümrük R., Mines R. A. W., & Karadeniz S., Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions, Mater. Sci. Eng. A, 586, 392-406. 2013.
  • Ozdemir Z., Hernandez-Nava E., Tyas A., Warren J. A., Fay S. D., Goodall R., ... Askes H., Energy absorption in lattice structures in dynamics: Experiments, International Journal of Impact Engineering, 89, 49-61, 2016.
  • Schaedler T. A., Jacobsen A. J., Torrents A., Sorensen A. E., Lian J., Greer J. R., ... Carter W. B., Ultralight metallic microlattices, Science, 334(6058), 962-965, 2011.
  • Schaedler T. A., Ro C. J., Sorensen A. E., Eckel Z., Yang S. S., Carter W. B., Jacobse A. J., Designing metallic microlattices for energy absorber applications, Adv. Eng. Mater., 16(3), 276-283, 2014.
  • Bouwhuis B. A., Ronis T., McCrea J. L., Palumbo G., Hibbard G. D., Structural nanocrystalline Ni coatings on periodic cellular steel, Composites Science and Technology, 69(3-4), 385-390, 2009.
  • Sudagar J., Lian J., Sha W., Electroless nickel, alloy, composite and nano coatings–A critical review, J. Alloys Compd., 571, 183-204, 2013.
  • Oliver W. C., Pharr G. M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7(6), 1564-1583, 1992.
  • Liu R., Li X., Wang H., Ding G., Yang C., Yang Z., A new method for the micro-tensile testing of thin film. In Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008. 3rd IEEE International Conference on. IEEE, 112-115, January 2008.
  • Read D. T., Dally J. W., A new method for measuring the strength and ductility of thin films, J. Mater. Res., 8(7), 1542-1549, 1993.
  • Dehm G., Wörgötter H. P., Cazottes S., Purswani J. M., Gall D., Mitterer C., Kiener, D., Can micro-compression testing provide stress–strain data for thin films?: A comparative study using Cu, VN, TiN and W coatings, Thin Solid Films, 518(5), 1517-1521, 2009.
  • Jeong H. J., Lim N. S., Lee B. H., Park C. G., Lee S., Kang S. H., Lee H. W., Kim H. S., Local and Global Stress–Strain Behaviors of Transformation-Induced Plasticity Steel Using the Combined Nanoindentation and Finite Element Analysis Method, Metall. Mater. Trans. A, 45(13), 6008–6015, 2014.
  • Bouzakis, K. D., Michailidis, N., An accurate and fast approach for determining materials stress–strain curves by nanoindentation and its FEM-based simulation, Mater. Charact., 56(2), 147-157, 2006.
  • Li Y., Stevens P., Sun M., Zhang C., Wang, W., Improvement of predicting mechanical properties from spherical indentation test, International Journal of Mechanical Sciences, 117, 182-196, 2016.
  • De Bono D. M., Inverse Analysis and Microstructure Effects in Nanoindentation Testing, Doktora Tezi, University of Surrey, United Kingdom, 2017.
  • Tsopanos S., Mines R. A. W., McKown S., Shen Y., Cantwell W. J., Brooks W., Sutcliffe C. J., The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures, Journal of Manufacturing Science and Engineering, 132(4), 041011, 2010.
  • Poon B., Rittel D., Ravichandran G., An analysis of nanoindentation in linearly elastic solids, International Journal of Solids and Structures, 45(24), 6018-6033, 2008.
  • De Bono D. M., London T., Baker M., Whiting M. J., A robust inverse analysis method to estimate the local tensile properties of heterogeneous materials from nano-indentation data, International Journal of Mechanical Sciences, 123, 162–176, 2017.
  • Gümrük R., Uşun A., Mines R., Enhancement of the Mechanical Performance of Stainless-Steel Micro Lattice Structures Using Electroless Plated Nickel Coatings, Proceedings, Vol. 2, No. 8, p. 494, 2018.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Recep GÜMRÜK (Primary Author)
KARADENİZ TEKNİK ÜNİVERSİTESİ
0000-0002-1447-523X
Türkiye


Altuğ UŞUN
KARADENİZ TEKNİK ÜNİVERSİTESİ
0000-0003-0773-9548
Türkiye

Publication Date July 21, 2020
Application Date July 3, 2019
Acceptance Date April 29, 2020
Published in Issue Year 2020, Volume 35, Issue 4

Cite

Bibtex @research article { gazimmfd586438, journal = {Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi}, issn = {1300-1884}, eissn = {1304-4915}, address = {}, publisher = {Gazi University}, year = {2020}, volume = {35}, number = {4}, pages = {1783 - 1798}, doi = {10.17341/gazimmfd.586438}, title = {Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi}, key = {cite}, author = {Gümrük, Recep and Uşun, Altuğ} }
APA Gümrük, R. & Uşun, A. (2020). Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi . Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi , 35 (4) , 1783-1798 . DOI: 10.17341/gazimmfd.586438
MLA Gümrük, R. , Uşun, A. "Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi" . Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 (2020 ): 1783-1798 <https://dergipark.org.tr/en/pub/gazimmfd/issue/56113/586438>
Chicago Gümrük, R. , Uşun, A. "Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 (2020 ): 1783-1798
RIS TY - JOUR T1 - Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi AU - Recep Gümrük , Altuğ Uşun Y1 - 2020 PY - 2020 N1 - doi: 10.17341/gazimmfd.586438 DO - 10.17341/gazimmfd.586438 T2 - Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi JF - Journal JO - JOR SP - 1783 EP - 1798 VL - 35 IS - 4 SN - 1300-1884-1304-4915 M3 - doi: 10.17341/gazimmfd.586438 UR - https://doi.org/10.17341/gazimmfd.586438 Y2 - 2020 ER -
EndNote %0 Journal of the Faculty of Engineering and Architecture of Gazi University Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi %A Recep Gümrük , Altuğ Uşun %T Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi %D 2020 %J Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi %P 1300-1884-1304-4915 %V 35 %N 4 %R doi: 10.17341/gazimmfd.586438 %U 10.17341/gazimmfd.586438
ISNAD Gümrük, Recep , Uşun, Altuğ . "Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35 / 4 (July 2020): 1783-1798 . https://doi.org/10.17341/gazimmfd.586438
AMA Gümrük R. , Uşun A. Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(4): 1783-1798.
Vancouver Gümrük R. , Uşun A. Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(4): 1783-1798.
IEEE R. Gümrük and A. Uşun , "Akımsız nikel kaplanmış mikro kafes yapıların mekanik özelliklerinin incelenmesi", Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 35, no. 4, pp. 1783-1798, Jul. 2020, doi:10.17341/gazimmfd.586438