Research Article
BibTex RIS Cite
Year 2021, Volume: 36 Issue: 1, 447 - 458, 01.12.2020
https://doi.org/10.17341/gazimmfd.561583

Abstract

In this study, a simulation model has been developed for the Otto-cycle to be used in the spark ignition engines using the finite-time thermodynamics method. In the simulation model, it has been assumed that the temperature dependent-specific heats according to a logarithmic function, that the initial cycle temperature is higher than the ambient temperature with the effect of the residual gas temperature, irreversibilities in the compression and expansion processes, and heat, combustion and friction losses and the working fluid is composed of fuel-air-residual gases. The effects of compression ratio, equivalence ratio, and stroke/bore ratio on engine performance were investigated in detail. Thermal efficiency, specific fuel consumption, specific fuel cost and power density were used for performance analysis. Also, it was accepted that volumetric efficiency decreased when LPG was used in the engine. Performance loss factors were used for engine heat balance. The characteristics of a single-cylinder spark ignition engine have been used as a reference in the simulation. As a result of the comprehensive numerical study, it was observed that the power density decreased by 12% when the volume utilization of LPG decreased by 10%. Although the specific fuel consumption of LPG is higher than that of gasoline, the specific fuel cost of LPG is very low compared to gasoline due to the LPG/gasoline price ratio. The loss of performance decreases as the compression ratio increases and the stroke/bore ratio decreases. Also, performance losses increase when the equivalence ratio is greater than 1. It is seen that LPG performance can be eliminated by increasing the volumetric efficiency or increasing the compression ratio. When the LPG/gasoline price ratio is 0.54, it is determined that the engine running on LPG is 24% more economical compared to working with gasoline. When the LPG/gasoline price ratio is 0.67, it has been observed that LPG has no economic advantage. With this study, significant results have been obtained especially for engine designers.

References

  • 1. Turkish Statistical Institute, Number of road motor vehicles by kind of fuel used, http://tuik.gov.tr/PreIstatistikTablo.do?istab_id=1582. Yayın tarihi: Mart 2019, Erişim tarihi: Mayıs 5, 2019.
  • 2. Pourkhesalian, A. M., Shamekhi, A. H., Salimi, F., Alternative fuel and gasoline in an SI engine: A comparative study of performance and emissions characteristics, Fuel, 89 (5), 1056-1063, 2010.
  • 3. Ozcan, H.,and Yamin, J. A., Performance and emission characteristics of LPG powered four stroke SI engine under variable stroke length and compression ratio. Energy Conversion and Management, 49 (5), 1193-1201, 2008.
  • 4. Gümüş, M., The effect of lpg using ratio on performance and emission characteristics in a spark ignition engine with dual fuel injection, Journal of the Faculty of Engineering and Architecture of Gazi University, 24 (2), 265-273, 2009.
  • 5. Gumus, M., Effects of volumetric efficiency on the performance and emissions characteristics of a dual fueled (gasoline and LPG) spark ignition engine, Fuel Processing Technology, 92 (10), 1862-1867, 2011.
  • 6. Yousufuddin, S., Mehdi, S. N., Performance and emission characteristics of LPG-fuelled variable compression ratio SI engine, Turkish Journal of Engineering and Environmental Sciences, 32(1), 7-12, 2008.
  • 7. Çinar, C., Şahin, F., Can, Ö., Uyumaz, A., A comparison of performance and exhaust emissions with different valve lift profiles between gasoline and LPG fuels in a SI engine. Applied Thermal Engineering, 107, 1261-1268, 2016.
  • 8. Bayraktar, H., Durgun, O., Investigating the effects of LPG on spark ignition engine combustion and performance, Energy Conversion and Management, 46 (13-14), 2317-2333, 2005.
  • 9. Masi, M., Experimental analysis on a spark ignition petrol engine fuelled with LPG (liquefied petroleum gas), Energy, 41 (1), 252-260, 2012.
  • 10. Caton, J. A., An introduction to thermodynamic cycle simulations for internal combustion engines. John Wiley & Sons, UK, 2015.
  • 11. Yılmaz, E., Polat, S., Solmaz, H., Aksoy, F., Çınar, C., Thermodynamic comparison of crank-drive and rhombic-drive mechanisms for a single cylinder spark ignition engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 595-606, 2020.
  • 12. Yontar, A., Doğu, Y., Investigation of ignition advance effects for CNG usage in a sequential dual ignition gasoline engine by using in-cylinder combustion cfd analysis, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (2), 1087-1100, 2019.
  • 13. Winterbone, D., and Turan, A., Advanced thermodynamics for engineers. Butterworth-Heinemann, UK, 2015.
  • 14. Kaushik, S. C., Tyagi, S. K., & Kumar, P., Finite time thermodynamics of power and refrigeration cycles. Springer International Publishing, India, 2017.
  • 15. Arabacı, E, A simple approach for comparing performance of gasoline general-purpose engines at maximum power, European Journal of Science and Technology, (15), 269-279, 2019.
  • 16. Ebrahimi, R,. Performance analysis of an irreversible Miller cycle with considerations of relative air–fuel ratio and stroke length, Applied Mathematical Modelling, 36 (9), 4073-4079, 2012.
  • 17. Gonca, G., and Sahin, B., The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle, Applied Mathematical Modelling, 40 (5-6), 3764-3782, 2016.
  • 18. Dobrucali, E., The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine, Energy, 103, 119-126, 2016.
  • 19. Gonca, G., Sahin, B., Ust, Y., Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version, Energy, 54, 285-290, 2013.
  • 20. Ebrahimi, R., Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine, Mathematical and Computer Modelling, 53 (5-6), 1289-1297, 2011.
  • 21. Ebrahimi, R., Dehkordi, N. S., Effects of design and operating parameters on entropy generation of a dual cycle, Journal of Thermal Analysis and Calorimetry, 133 (3), 1609-1616, 2018.
  • 22. Ebrahimi, R., Sherafati, M., Thermodynamic simulation of performance of a dual cycle with stroke length and volumetric efficiency, Journal of thermal analysis and calorimetry, 111 (1), 951-957, 2013.
  • 23. Özdemir, A. O., Kılıç, B., Arabacı, E., Orman, R. Ç., Effect of mean piston speed and residual gas fraction on performance of a four-stroke irreversible Otto cycle engine, Scientific Journal of Mehmet Akif Ersoy University, 1 (1), 6-12, 2018.
  • 24. Wu, Z., Chen, L., Ge, Y., Sun, F., Thermodynamic optimization for an air-standard irreversible Dual-Miller cycle with linearly variable specific heat ratio of working fluid, International Journal of Heat and Mass Transfer, 124, 46-57, 2018.
  • 25. Ge, Y., Chen, L., Qin, X., Xie, Z., Exergy-based ecological performance of an irreversible Otto cycle with temperature-linear-relation variable specific heat of working fluid, The European Physical Journal Plus, 132 (5), 209, 2017.
  • 26. Ge, Y., Chen, L., Sun, F., Wu, C., Effects of heat transfer and friction on the performance of an irreversible air-standard Miller cycle, International Communications in Heat and Mass Transfer, 32 (8), 1045-1056, 2005.
  • 27. Gonca, G., Performance Analysis of an Atkinson Cycle Engine under Effective Power and Effective Power Density Conditions, Acta Physica Polonica, A., 132 (4), 1306-1313, 2017.
  • 28. Ebrahimi, R., Second law analysis on an air-standard Miller engine. Acta Physica Polonıca A, 129 (6), 1079-1082, 2016.
  • 29. Ebrahimi, R., Thermodynamic Modeling of an Atkinson Cycle with respect to Relative Air-Fuel Ratio, Fuel Mass Flow Rate and Residual Gases, Acta Physica Polonica, A., 124 (1), 29-34, 2013.
  • 30. Ge, Y., Chen, L., Qin, X., Effect of specific heat variations on irreversible Otto cycle performance, International Journal of Heat and Mass Transfer, 122, 403-409, 2018.
  • 31. Honda Motor Europe, Technical Specifications for Honda GX270, http://www.honda-engines-eu.com/documents/10912/15992/TS_GX270, Erişim tarihi: Mayıs 5, 2019.
  • 32. Ebrahimi, R., Hoseinpour, M., Performance analysis of irreversible Miller cycle under variable compression ratio, Journal of Thermophysics and Heat Transfer, 27 (3), 542-548, 2013.
  • 33. Ebrahimi, R., Thermodynamic simulation of performance of an irreversible Otto cycle with engine speed and variable specific heat ratio of working fluid, Arabian Journal for Science and Engineering, 39 (3), 2091-2096, 2014.
  • 34. Ferguson, C. R., Kirkpatrick, A. T., Internal combustion engines: applied thermosciences, John Wiley & Sons, USA, 2015.
  • 35. Çengel, Y. A., Boles, M. A., Kanoglu, M., Thermodynamics: An Engineering Approach, McGraw-Hill, USA, 2019.
  • 36. Heywood, J. B, Internal combustion engine fundamentals, McGraw-Hill, USA, 1988.
  • 37. Ebrahimi, R., Effect of Volume Ratio of Heat Rejection Process on Performance of an Atkinson Cycle, Acta Physica Polonica A, 133 (1), 201-205, 2018.
  • 38. Autotraveler, Fuel prices in Europe, https://autotraveler.ru/en/spravka/fuel-price-in-europe.html#.XNFez44zY2w, Erişim tarihi: Mayıs 5, 2019.
  • 39. Gonca, G., Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine), Energy, 109, 152-159, 2016.
  • 40. Chase Jr, M.W., Curnutt, J.L., Downey Jr, J. R., McDonald, R. A., Syverud, A.N., Valenzuela, E.A., JANAF thermochemical tables, 1982 supplement, Journal of Physical and Chemical Reference Data, 11 (3), 695-940, 1982.
  • 41. Gonca, G., Hocaoglu, M.F,. Performance Analysis and Simulation of a Diesel-Miller Cycle (DiMC) Engine, Arabian Journal for Science and Engineering, 1-14, 2019.
  • 42. Gonca, G., Thermodynamic analysis and performance maps for the irreversible Dual–Atkinson cycle engine (DACE) with considerations of temperature-dependent specific heats, heat transfer and friction losses, Energy Conversion and Management, 111, 205-216, 2016.
  • 43. Gonca, G., Dobrucali, E., Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends, Renewable Energy, 93, 658-666, 2016.
  • 44. Gonca, G., Effects of engine design and operating parameters on the performance of a spark ignition (SI) engine with steam injection method (SIM), Applied Mathematical Modelling, 44, 655-675, 2017.
  • 45. Hohenberg, G. F., Advanced approaches for heat transfer calculations, SAE Technical paper. No: 790825, 1979.
  • 46. Morganti, K. J., Foong, T. M., Brear, M. J., da Silva, G., Yang, Y., & Dryer, F. L. The research and motor octane numbers of liquefied petroleum gas (LPG). Fuel, 108, 797-811, 2013.

Yakıt olarak benzin ve LPG kullanılan buji ateşlemeli bir motorun simülasyonu ve performans analizi

Year 2021, Volume: 36 Issue: 1, 447 - 458, 01.12.2020
https://doi.org/10.17341/gazimmfd.561583

Abstract

Bu çalışmada sonlu zaman termodinamiği metodu kullanılarak buji ateşlemeli motorlarda kullanılmak üzere, Otto çevrimi için bir simülasyon modeli oluşturulmuştur. Simülasyon modelinde, logaritmik bir fonksiyona göre özgül ısıların sıcaklığa bağlı değiştiği, çevrim başlangıç sıcaklığının artık gaz sıcaklığının etkisi ile ortam sıcaklığından yüksek olduğu, sıkıştırma genişleme süreçlerinde tersinmezliklerin olduğu ve ısı, yanma ve sürtünme kayıplarının olduğu, çalışma maddesinin yakıt-hava-artık gaz karışımından oluştuğu kabul edilmiştir. Sıkıştırma oranı, eşdeğerlik oranı ve strok/çap oranının motor performansına etkisi detaylı olarak incelenmiştir. Performans analizi için ısıl verim, özgül yakıt tüketimi, özgül yakıt maliyeti ve güç yoğunluğu kullanılmıştır. Ayrıca motorda LPG kullanıldığında hacimsel verimin azaldığı kabul edilmiştir. Motor ısı balansı için performans kaybı faktörleri kullanılmıştır. Tek silindirli buji ateşlemeli bir motorun özellikleri referans olarak simülasyonda kullanılmıştır. Yapılan kapsamlı sayısal çalışma neticesinde, LPG kullanımında hacimsel verimin %10 azaldığı kabul edildiğinde güç yoğunluğunun %12 azaldığı görülmüştür. LPG’nin özgül yakıt tüketimi benzine göre yüksek olmasına rağmen LPG/benzin fiyat oranı nedeniyle LPG’nin özgül yakıt maliyeti benzine göre oldukça düşük olmaktadır. Sıkıştırma oranının artmasıyla ve strok/çap oranının azalmasıyla birlikte performans kayıpları azalmaktadır. Ayrıca eşdeğerlik oranı 1’den büyük olduğunda performans kayıpları artmaktadır. LPG’nin performans düşüklüğü özellikle hacimsel verimin artırılması veya sıkıştırma oranının artırılmasıyla bertaraf edilebileceği görülmektedir. LPG/benzin fiyat oranı 0,54 olduğunda LPG ile çalışan motorun benzin ile çalışmasına kıyasla %24 daha ekonomik olduğu belirlenmiştir. LPG/benzin fiyat oranı 0,67 olduğunda ise LPG’nin ekonomik avantajının olmadığı görülmüştür. Bu çalışmayla birlikte özellikle motor tasarımcıları için önemli sonuçlar elde edilmiştir.

References

  • 1. Turkish Statistical Institute, Number of road motor vehicles by kind of fuel used, http://tuik.gov.tr/PreIstatistikTablo.do?istab_id=1582. Yayın tarihi: Mart 2019, Erişim tarihi: Mayıs 5, 2019.
  • 2. Pourkhesalian, A. M., Shamekhi, A. H., Salimi, F., Alternative fuel and gasoline in an SI engine: A comparative study of performance and emissions characteristics, Fuel, 89 (5), 1056-1063, 2010.
  • 3. Ozcan, H.,and Yamin, J. A., Performance and emission characteristics of LPG powered four stroke SI engine under variable stroke length and compression ratio. Energy Conversion and Management, 49 (5), 1193-1201, 2008.
  • 4. Gümüş, M., The effect of lpg using ratio on performance and emission characteristics in a spark ignition engine with dual fuel injection, Journal of the Faculty of Engineering and Architecture of Gazi University, 24 (2), 265-273, 2009.
  • 5. Gumus, M., Effects of volumetric efficiency on the performance and emissions characteristics of a dual fueled (gasoline and LPG) spark ignition engine, Fuel Processing Technology, 92 (10), 1862-1867, 2011.
  • 6. Yousufuddin, S., Mehdi, S. N., Performance and emission characteristics of LPG-fuelled variable compression ratio SI engine, Turkish Journal of Engineering and Environmental Sciences, 32(1), 7-12, 2008.
  • 7. Çinar, C., Şahin, F., Can, Ö., Uyumaz, A., A comparison of performance and exhaust emissions with different valve lift profiles between gasoline and LPG fuels in a SI engine. Applied Thermal Engineering, 107, 1261-1268, 2016.
  • 8. Bayraktar, H., Durgun, O., Investigating the effects of LPG on spark ignition engine combustion and performance, Energy Conversion and Management, 46 (13-14), 2317-2333, 2005.
  • 9. Masi, M., Experimental analysis on a spark ignition petrol engine fuelled with LPG (liquefied petroleum gas), Energy, 41 (1), 252-260, 2012.
  • 10. Caton, J. A., An introduction to thermodynamic cycle simulations for internal combustion engines. John Wiley & Sons, UK, 2015.
  • 11. Yılmaz, E., Polat, S., Solmaz, H., Aksoy, F., Çınar, C., Thermodynamic comparison of crank-drive and rhombic-drive mechanisms for a single cylinder spark ignition engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (2), 595-606, 2020.
  • 12. Yontar, A., Doğu, Y., Investigation of ignition advance effects for CNG usage in a sequential dual ignition gasoline engine by using in-cylinder combustion cfd analysis, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (2), 1087-1100, 2019.
  • 13. Winterbone, D., and Turan, A., Advanced thermodynamics for engineers. Butterworth-Heinemann, UK, 2015.
  • 14. Kaushik, S. C., Tyagi, S. K., & Kumar, P., Finite time thermodynamics of power and refrigeration cycles. Springer International Publishing, India, 2017.
  • 15. Arabacı, E, A simple approach for comparing performance of gasoline general-purpose engines at maximum power, European Journal of Science and Technology, (15), 269-279, 2019.
  • 16. Ebrahimi, R,. Performance analysis of an irreversible Miller cycle with considerations of relative air–fuel ratio and stroke length, Applied Mathematical Modelling, 36 (9), 4073-4079, 2012.
  • 17. Gonca, G., and Sahin, B., The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle, Applied Mathematical Modelling, 40 (5-6), 3764-3782, 2016.
  • 18. Dobrucali, E., The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine, Energy, 103, 119-126, 2016.
  • 19. Gonca, G., Sahin, B., Ust, Y., Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version, Energy, 54, 285-290, 2013.
  • 20. Ebrahimi, R., Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine, Mathematical and Computer Modelling, 53 (5-6), 1289-1297, 2011.
  • 21. Ebrahimi, R., Dehkordi, N. S., Effects of design and operating parameters on entropy generation of a dual cycle, Journal of Thermal Analysis and Calorimetry, 133 (3), 1609-1616, 2018.
  • 22. Ebrahimi, R., Sherafati, M., Thermodynamic simulation of performance of a dual cycle with stroke length and volumetric efficiency, Journal of thermal analysis and calorimetry, 111 (1), 951-957, 2013.
  • 23. Özdemir, A. O., Kılıç, B., Arabacı, E., Orman, R. Ç., Effect of mean piston speed and residual gas fraction on performance of a four-stroke irreversible Otto cycle engine, Scientific Journal of Mehmet Akif Ersoy University, 1 (1), 6-12, 2018.
  • 24. Wu, Z., Chen, L., Ge, Y., Sun, F., Thermodynamic optimization for an air-standard irreversible Dual-Miller cycle with linearly variable specific heat ratio of working fluid, International Journal of Heat and Mass Transfer, 124, 46-57, 2018.
  • 25. Ge, Y., Chen, L., Qin, X., Xie, Z., Exergy-based ecological performance of an irreversible Otto cycle with temperature-linear-relation variable specific heat of working fluid, The European Physical Journal Plus, 132 (5), 209, 2017.
  • 26. Ge, Y., Chen, L., Sun, F., Wu, C., Effects of heat transfer and friction on the performance of an irreversible air-standard Miller cycle, International Communications in Heat and Mass Transfer, 32 (8), 1045-1056, 2005.
  • 27. Gonca, G., Performance Analysis of an Atkinson Cycle Engine under Effective Power and Effective Power Density Conditions, Acta Physica Polonica, A., 132 (4), 1306-1313, 2017.
  • 28. Ebrahimi, R., Second law analysis on an air-standard Miller engine. Acta Physica Polonıca A, 129 (6), 1079-1082, 2016.
  • 29. Ebrahimi, R., Thermodynamic Modeling of an Atkinson Cycle with respect to Relative Air-Fuel Ratio, Fuel Mass Flow Rate and Residual Gases, Acta Physica Polonica, A., 124 (1), 29-34, 2013.
  • 30. Ge, Y., Chen, L., Qin, X., Effect of specific heat variations on irreversible Otto cycle performance, International Journal of Heat and Mass Transfer, 122, 403-409, 2018.
  • 31. Honda Motor Europe, Technical Specifications for Honda GX270, http://www.honda-engines-eu.com/documents/10912/15992/TS_GX270, Erişim tarihi: Mayıs 5, 2019.
  • 32. Ebrahimi, R., Hoseinpour, M., Performance analysis of irreversible Miller cycle under variable compression ratio, Journal of Thermophysics and Heat Transfer, 27 (3), 542-548, 2013.
  • 33. Ebrahimi, R., Thermodynamic simulation of performance of an irreversible Otto cycle with engine speed and variable specific heat ratio of working fluid, Arabian Journal for Science and Engineering, 39 (3), 2091-2096, 2014.
  • 34. Ferguson, C. R., Kirkpatrick, A. T., Internal combustion engines: applied thermosciences, John Wiley & Sons, USA, 2015.
  • 35. Çengel, Y. A., Boles, M. A., Kanoglu, M., Thermodynamics: An Engineering Approach, McGraw-Hill, USA, 2019.
  • 36. Heywood, J. B, Internal combustion engine fundamentals, McGraw-Hill, USA, 1988.
  • 37. Ebrahimi, R., Effect of Volume Ratio of Heat Rejection Process on Performance of an Atkinson Cycle, Acta Physica Polonica A, 133 (1), 201-205, 2018.
  • 38. Autotraveler, Fuel prices in Europe, https://autotraveler.ru/en/spravka/fuel-price-in-europe.html#.XNFez44zY2w, Erişim tarihi: Mayıs 5, 2019.
  • 39. Gonca, G., Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine), Energy, 109, 152-159, 2016.
  • 40. Chase Jr, M.W., Curnutt, J.L., Downey Jr, J. R., McDonald, R. A., Syverud, A.N., Valenzuela, E.A., JANAF thermochemical tables, 1982 supplement, Journal of Physical and Chemical Reference Data, 11 (3), 695-940, 1982.
  • 41. Gonca, G., Hocaoglu, M.F,. Performance Analysis and Simulation of a Diesel-Miller Cycle (DiMC) Engine, Arabian Journal for Science and Engineering, 1-14, 2019.
  • 42. Gonca, G., Thermodynamic analysis and performance maps for the irreversible Dual–Atkinson cycle engine (DACE) with considerations of temperature-dependent specific heats, heat transfer and friction losses, Energy Conversion and Management, 111, 205-216, 2016.
  • 43. Gonca, G., Dobrucali, E., Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends, Renewable Energy, 93, 658-666, 2016.
  • 44. Gonca, G., Effects of engine design and operating parameters on the performance of a spark ignition (SI) engine with steam injection method (SIM), Applied Mathematical Modelling, 44, 655-675, 2017.
  • 45. Hohenberg, G. F., Advanced approaches for heat transfer calculations, SAE Technical paper. No: 790825, 1979.
  • 46. Morganti, K. J., Foong, T. M., Brear, M. J., da Silva, G., Yang, Y., & Dryer, F. L. The research and motor octane numbers of liquefied petroleum gas (LPG). Fuel, 108, 797-811, 2013.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Emre Arabacı 0000-0002-6219-7246

Publication Date December 1, 2020
Submission Date May 8, 2019
Acceptance Date September 20, 2020
Published in Issue Year 2021 Volume: 36 Issue: 1

Cite

APA Arabacı, E. (2020). Yakıt olarak benzin ve LPG kullanılan buji ateşlemeli bir motorun simülasyonu ve performans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(1), 447-458. https://doi.org/10.17341/gazimmfd.561583
AMA Arabacı E. Yakıt olarak benzin ve LPG kullanılan buji ateşlemeli bir motorun simülasyonu ve performans analizi. GUMMFD. December 2020;36(1):447-458. doi:10.17341/gazimmfd.561583
Chicago Arabacı, Emre. “Yakıt Olarak Benzin Ve LPG kullanılan Buji ateşlemeli Bir Motorun simülasyonu Ve Performans Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, no. 1 (December 2020): 447-58. https://doi.org/10.17341/gazimmfd.561583.
EndNote Arabacı E (December 1, 2020) Yakıt olarak benzin ve LPG kullanılan buji ateşlemeli bir motorun simülasyonu ve performans analizi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 1 447–458.
IEEE E. Arabacı, “Yakıt olarak benzin ve LPG kullanılan buji ateşlemeli bir motorun simülasyonu ve performans analizi”, GUMMFD, vol. 36, no. 1, pp. 447–458, 2020, doi: 10.17341/gazimmfd.561583.
ISNAD Arabacı, Emre. “Yakıt Olarak Benzin Ve LPG kullanılan Buji ateşlemeli Bir Motorun simülasyonu Ve Performans Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/1 (December 2020), 447-458. https://doi.org/10.17341/gazimmfd.561583.
JAMA Arabacı E. Yakıt olarak benzin ve LPG kullanılan buji ateşlemeli bir motorun simülasyonu ve performans analizi. GUMMFD. 2020;36:447–458.
MLA Arabacı, Emre. “Yakıt Olarak Benzin Ve LPG kullanılan Buji ateşlemeli Bir Motorun simülasyonu Ve Performans Analizi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 36, no. 1, 2020, pp. 447-58, doi:10.17341/gazimmfd.561583.
Vancouver Arabacı E. Yakıt olarak benzin ve LPG kullanılan buji ateşlemeli bir motorun simülasyonu ve performans analizi. GUMMFD. 2020;36(1):447-58.

Cited By