Research Article
BibTex RIS Cite

Hematit parçacıkların kısa ve görünür dalga boyundaki ışınım ve düşük sıcaklıklardaki ısıl özellikleri

Year 2021, Volume: 36 Issue: 1, 191 - 200, 01.12.2020
https://doi.org/10.17341/gazimmfd.691904

Abstract

Bu çalışmada 900-1100 °C sıcaklıklarda basınçlı alın kaynak (flash butt welding) işlemi sonucunda oluşan ve sistem dışına atılan demir tozlarının, kısa ve görünür dalga boyu aralığındaki ışınım özellikleri ve düşük sıcaklıklardaki ısıl iletkenliği incelenmiştir. Hematit yapısında olan atık demir tozları elek analizi ile parçaçık büyüklüklerine göre ayrıştırılmıştır. Parçacık büyüklüğü en küçük, orta ve en büyük olan çeşitli büyüklüklerdeki numunelerin soğurma (absorbans)-dalga boyu değişimi ve ısıl iletkenlik-sıcaklık değişimi incelenmiştir. Hematit (α-Fe2O3) parçacıklarının, yaşlanma sürecinde oluşan oksidasyon bölgeleri SEM görüntüleri ile tespit edilmiştir. Parçacıkların içeriği ve büyüklüğü ile oksitlenme etkisi, numunelerin ışınım özelliklerinin dalga boyu ile değişiminde ve ısıl iletkenlik katsayısının sıcaklıkla değişiminde etkili olduğu görülmüştür. Atık hematit parçacıklarının ışınım ve ısı iletim özellikleri parçacık büyüklüğü artıkça artmaktadır. Ancak ışınım özelliği artan dalga boyu ile ısı iletim özelliği de artan sıcaklıkla azalmaktadır.

References

  • Referans 1. Querry M.R., Optical constants of minerals and other materials from the millimeter to the ultraviolet, CRDEC-CR88009, US Army Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, MD, 331pp., 1987.
  • Referans 2. Sokolik IN, Toon OB, Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol, J Geophys Res 104 D8 9423-44, 1999.
  • Referans 3. Shi Z., Bonneville S., Krom M.D., Carslaw K.S., Jickells T.D., Baker A.R., Benning L.G., Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing, Atmos. Chem. Phys. 11 995-1007, 2011.
  • Referans 4. Zboril R., Mashlan M., Petridis D., Iron(III) Oxides from Thermal Processes Synthesis, Structural and Magnetic Properties, Mossbauer Spectroscopy Characterization, and Applications, American Chem. Mater. 14 (3) 969-982, 2002.
  • Referans 5. Hsu WP., Matijević E., Optical properties of monodispersed hematite hydrosols, Applied Optics 24 (11) 1623-1630, 1985.
  • Referans 6. Cherepy NJ., Liston DB., Lovejoy JA., Deng H., Zhang JZ., Ultrafast studies of photoexcited electron dynamics in γ- and α- Fe2O3 semiconductor nanoparticles, J. Phys. Chem. B 102 770, 1998.
  • Referans 7. Lu L., Li L., Wang X., Li G., Understanding of the finite size effects on lattice vibrations and electronic transitions of nano α-Fe2O3, J. Phys. Chem. B 109 17151-17156, 2005.
  • Referans 8. Bedidi A., Cervelle B., Light scattering by spherical particles with hematite and goethite like optical properties: effect of water impregnation, J Geophys Res-Sol Ea 98 B7 11941-11952, 1993.
  • Referans 9. Muñoz O., Volten H., Hovenier J.W., Min M., Shkuratov Y.G., Jalava J.P., van der Zande W.J., Waters L.B.F.M., Experimental and Computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile, Astronomy & Astrophysics 446 525-535, 2006.
  • Referans 10. Meland B., Kleiber P.D., Grassian V.H., Young M.A., Visible light scattering study at 470, 550 and 660 nm of components of mineral dust aerosol: Hematite and Goethite, J Quant Spectrosc Radiat Transfer 112 1108-1118, 2011.
  • Referans 11. Chakrabarty S., Catterjee K., Oriented growth of α-Fe2O3 nanocrystals with different morphology and their optical behavior, Journal of Crystal Growth 381 107-113, 2013.
  • Referans 12. Chen L., Yang X., Chen J., Liu J., Wu H., Zhan H., Liang C., Wu M., Continuous shape- and spectroscopy—tuning of hematite nanocrystals, Inorg Chem 49 8411-8420, 2010.
  • Referans 13. Legodi MA, De Waal D., The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste, Dyes and Pigments 74 161-168, 2007.
  • Referans 14. Wheeler DA, Wang G., Ling Y., Li Y, Zhang Z., Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties, Energy Environ. Sci. 5 6682, 2012.
  • Referans 15. He YP., Miao YM., Li CR., Wang SQ., Cao L., Xie SS., Yang GZ., Zou BS., Burda C., Size and structure effect on optical transitions of iron oxide nanocrystals, Phys. Rev. B 71, 125411, 2005.
  • Referans 16. Degueldre C., Fuks L., Schenker E., Pre-oxidation of stainless steel: a study by diffuse reflection spectroscopy, Applied Surface Science 134 254–262, 1998.
  • Referans 17. Goossens V., Wielant J., Van Gils S., Finsy R., Terryn H., Optical properties of thin iron oxide films on steel, Surf. Interface Anal. 38: 489–493, 2006.
  • Referans 18. Chen YH, Tu KJ, Thickness dependent on Photocatalytic activity of hematite thin films, Int J Photoenergy Article ID 980595, 2012.
  • Referans 19. Akiyama T., Ohta H., Takahashi R., Waseda Y., Yagi J., Measurement and modelling of thermal conductivity for Dense Iron Oxide and Porous Iron Ore Agglomerates in stepwise Reduction, ISIJ International, Vol. 32 (7) 829-837, 1992.
  • Referans 20. Doner N., Pargan AR., Aygahoglu A., Liu F., Sen F., Radiative properties of hematite particles in the UV-visible Spectrum, International Journal of Thermal Sciences, 139 79-87, 2019.
  • Referans 21. Pargan A.R., Kaynak sonrası oluşan gaz içindeki partiküllerin Işınım Özelliklerinin İncelenmesi, Kütahya Dumlupınar Üniversitesi Fen Bilimleri Endtitüsü, Yüksek lisans Tezi, 2018.
  • Referans 22. Howell J.R., Siegel R., Mengüç M.P., Thermal Radiation Heat Transfer Fifth Edition, CRC Press, Taylor & Francis Group New York, 2010.
  • Referans 23. Molgaard J., Smeltzer W.W., Thermal conductivity of Magnetite and Hematite, Journal of Applied Physics 42:9 3644-3647, 1971.
  • Referans 24. Abu-Eishah, S.I. 2001. Correlations for the thermal conductivity of metals as a function of temperature, International Journal of Thermophysics, 22(61855-1868, 2001.
  • Referans 25. Kahnert M., Nousiainen T., Mauno P., On the impact of non-sphericity and small-scale surface roughness on the optical properties of hematite aerosols, Goethite, J Quant Spectrosc Radiat Transfer 112 1815-1824, 2011.
  • Referans 26. Rother T., Schmith K., Wauer J., Shcherbakov V, Gayet J-F, Light scattering on Chebyshev particles of higher order, Appl Opt 45 6030-7, 2006.
Year 2021, Volume: 36 Issue: 1, 191 - 200, 01.12.2020
https://doi.org/10.17341/gazimmfd.691904

Abstract

References

  • Referans 1. Querry M.R., Optical constants of minerals and other materials from the millimeter to the ultraviolet, CRDEC-CR88009, US Army Chemical Research, Development and Engineering Center, Aberdeen Proving Ground, MD, 331pp., 1987.
  • Referans 2. Sokolik IN, Toon OB, Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol, J Geophys Res 104 D8 9423-44, 1999.
  • Referans 3. Shi Z., Bonneville S., Krom M.D., Carslaw K.S., Jickells T.D., Baker A.R., Benning L.G., Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing, Atmos. Chem. Phys. 11 995-1007, 2011.
  • Referans 4. Zboril R., Mashlan M., Petridis D., Iron(III) Oxides from Thermal Processes Synthesis, Structural and Magnetic Properties, Mossbauer Spectroscopy Characterization, and Applications, American Chem. Mater. 14 (3) 969-982, 2002.
  • Referans 5. Hsu WP., Matijević E., Optical properties of monodispersed hematite hydrosols, Applied Optics 24 (11) 1623-1630, 1985.
  • Referans 6. Cherepy NJ., Liston DB., Lovejoy JA., Deng H., Zhang JZ., Ultrafast studies of photoexcited electron dynamics in γ- and α- Fe2O3 semiconductor nanoparticles, J. Phys. Chem. B 102 770, 1998.
  • Referans 7. Lu L., Li L., Wang X., Li G., Understanding of the finite size effects on lattice vibrations and electronic transitions of nano α-Fe2O3, J. Phys. Chem. B 109 17151-17156, 2005.
  • Referans 8. Bedidi A., Cervelle B., Light scattering by spherical particles with hematite and goethite like optical properties: effect of water impregnation, J Geophys Res-Sol Ea 98 B7 11941-11952, 1993.
  • Referans 9. Muñoz O., Volten H., Hovenier J.W., Min M., Shkuratov Y.G., Jalava J.P., van der Zande W.J., Waters L.B.F.M., Experimental and Computational study of light scattering by irregular particles with extreme refractive indices: hematite and rutile, Astronomy & Astrophysics 446 525-535, 2006.
  • Referans 10. Meland B., Kleiber P.D., Grassian V.H., Young M.A., Visible light scattering study at 470, 550 and 660 nm of components of mineral dust aerosol: Hematite and Goethite, J Quant Spectrosc Radiat Transfer 112 1108-1118, 2011.
  • Referans 11. Chakrabarty S., Catterjee K., Oriented growth of α-Fe2O3 nanocrystals with different morphology and their optical behavior, Journal of Crystal Growth 381 107-113, 2013.
  • Referans 12. Chen L., Yang X., Chen J., Liu J., Wu H., Zhan H., Liang C., Wu M., Continuous shape- and spectroscopy—tuning of hematite nanocrystals, Inorg Chem 49 8411-8420, 2010.
  • Referans 13. Legodi MA, De Waal D., The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste, Dyes and Pigments 74 161-168, 2007.
  • Referans 14. Wheeler DA, Wang G., Ling Y., Li Y, Zhang Z., Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties, Energy Environ. Sci. 5 6682, 2012.
  • Referans 15. He YP., Miao YM., Li CR., Wang SQ., Cao L., Xie SS., Yang GZ., Zou BS., Burda C., Size and structure effect on optical transitions of iron oxide nanocrystals, Phys. Rev. B 71, 125411, 2005.
  • Referans 16. Degueldre C., Fuks L., Schenker E., Pre-oxidation of stainless steel: a study by diffuse reflection spectroscopy, Applied Surface Science 134 254–262, 1998.
  • Referans 17. Goossens V., Wielant J., Van Gils S., Finsy R., Terryn H., Optical properties of thin iron oxide films on steel, Surf. Interface Anal. 38: 489–493, 2006.
  • Referans 18. Chen YH, Tu KJ, Thickness dependent on Photocatalytic activity of hematite thin films, Int J Photoenergy Article ID 980595, 2012.
  • Referans 19. Akiyama T., Ohta H., Takahashi R., Waseda Y., Yagi J., Measurement and modelling of thermal conductivity for Dense Iron Oxide and Porous Iron Ore Agglomerates in stepwise Reduction, ISIJ International, Vol. 32 (7) 829-837, 1992.
  • Referans 20. Doner N., Pargan AR., Aygahoglu A., Liu F., Sen F., Radiative properties of hematite particles in the UV-visible Spectrum, International Journal of Thermal Sciences, 139 79-87, 2019.
  • Referans 21. Pargan A.R., Kaynak sonrası oluşan gaz içindeki partiküllerin Işınım Özelliklerinin İncelenmesi, Kütahya Dumlupınar Üniversitesi Fen Bilimleri Endtitüsü, Yüksek lisans Tezi, 2018.
  • Referans 22. Howell J.R., Siegel R., Mengüç M.P., Thermal Radiation Heat Transfer Fifth Edition, CRC Press, Taylor & Francis Group New York, 2010.
  • Referans 23. Molgaard J., Smeltzer W.W., Thermal conductivity of Magnetite and Hematite, Journal of Applied Physics 42:9 3644-3647, 1971.
  • Referans 24. Abu-Eishah, S.I. 2001. Correlations for the thermal conductivity of metals as a function of temperature, International Journal of Thermophysics, 22(61855-1868, 2001.
  • Referans 25. Kahnert M., Nousiainen T., Mauno P., On the impact of non-sphericity and small-scale surface roughness on the optical properties of hematite aerosols, Goethite, J Quant Spectrosc Radiat Transfer 112 1815-1824, 2011.
  • Referans 26. Rother T., Schmith K., Wauer J., Shcherbakov V, Gayet J-F, Light scattering on Chebyshev particles of higher order, Appl Opt 45 6030-7, 2006.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Agah Aygahoğlu 0000-0002-6556-8663

Nimeti Döner 0000-0001-8963-2829

Ali Rıza Pargan This is me 0000-0002-7430-6091

Publication Date December 1, 2020
Submission Date February 20, 2020
Acceptance Date June 18, 2020
Published in Issue Year 2021 Volume: 36 Issue: 1

Cite

APA Aygahoğlu, A., Döner, N., & Pargan, A. R. (2020). Hematit parçacıkların kısa ve görünür dalga boyundaki ışınım ve düşük sıcaklıklardaki ısıl özellikleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(1), 191-200. https://doi.org/10.17341/gazimmfd.691904
AMA Aygahoğlu A, Döner N, Pargan AR. Hematit parçacıkların kısa ve görünür dalga boyundaki ışınım ve düşük sıcaklıklardaki ısıl özellikleri. GUMMFD. December 2020;36(1):191-200. doi:10.17341/gazimmfd.691904
Chicago Aygahoğlu, Agah, Nimeti Döner, and Ali Rıza Pargan. “Hematit parçacıkların kısa Ve görünür Dalga Boyundaki ışınım Ve düşük sıcaklıklardaki ısıl özellikleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, no. 1 (December 2020): 191-200. https://doi.org/10.17341/gazimmfd.691904.
EndNote Aygahoğlu A, Döner N, Pargan AR (December 1, 2020) Hematit parçacıkların kısa ve görünür dalga boyundaki ışınım ve düşük sıcaklıklardaki ısıl özellikleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 1 191–200.
IEEE A. Aygahoğlu, N. Döner, and A. R. Pargan, “Hematit parçacıkların kısa ve görünür dalga boyundaki ışınım ve düşük sıcaklıklardaki ısıl özellikleri”, GUMMFD, vol. 36, no. 1, pp. 191–200, 2020, doi: 10.17341/gazimmfd.691904.
ISNAD Aygahoğlu, Agah et al. “Hematit parçacıkların kısa Ve görünür Dalga Boyundaki ışınım Ve düşük sıcaklıklardaki ısıl özellikleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/1 (December 2020), 191-200. https://doi.org/10.17341/gazimmfd.691904.
JAMA Aygahoğlu A, Döner N, Pargan AR. Hematit parçacıkların kısa ve görünür dalga boyundaki ışınım ve düşük sıcaklıklardaki ısıl özellikleri. GUMMFD. 2020;36:191–200.
MLA Aygahoğlu, Agah et al. “Hematit parçacıkların kısa Ve görünür Dalga Boyundaki ışınım Ve düşük sıcaklıklardaki ısıl özellikleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 36, no. 1, 2020, pp. 191-00, doi:10.17341/gazimmfd.691904.
Vancouver Aygahoğlu A, Döner N, Pargan AR. Hematit parçacıkların kısa ve görünür dalga boyundaki ışınım ve düşük sıcaklıklardaki ısıl özellikleri. GUMMFD. 2020;36(1):191-200.