Araştırma Makalesi
BibTex RIS Kaynak Göster

Mermer işlemede kalite sınıflandırması için evrişimsel sinir ağı modeli

Yıl 2021, Cilt: 36 Sayı: 1, 347 - 358, 01.12.2020
https://doi.org/10.17341/gazimmfd.720041

Öz

Mermer işletmelerinin temel politikası; sürdürülebilir ve yüksek kaliteli ürünleri standartlaşmış bir yöntemle ortaya koymaktır. Farklı türdeki mermerlerin tanımlanması ve sınıflandırılması, genellikle bu alandaki uzman kişiler tarafından manuel olarak gerçekleştirilen kritik bir iştir. Bununla birlikte; mermer kalitesi sınıflandırılmasının insanlar tarafından ve manuel şekilde yapılması oldukça zaman alıcı, hatalara fazlasıyla açık, aynı zamanda da güvenilir olmayan ve öznel bir süreçtir. Bu süreci daha nesnel ve güvenilir, çok daha hızlı ve çok daha az insan müdahalesi gerektirecek şekilde otomatik hale dönüştüren bilgi teknolojilerine dayalı yaklaşımlar ve yöntemlere büyük ölçüde gereksinim vardır. Bu çalışmada; levha mermer resimlerini işleyerek altı farklı kalite tipine göre sınıflandıran bir derin öğrenme modeli geliştirilmiştir. Veri artırımı amacıyla, orijinal mermer resimlerine özgü bir görüntü ön işleme süreci gerçekleştirilmiş ve özel bir evrişimsel sinir ağı mimarisi tasarlanıp uyarlanmıştır. Mermer görselleri üzerinde bu çalışmada uygulanan özgün veri artırımı yaklaşımının, evrişimsel sinir ağı modelinin sınıflandırma başarısı ve doğruluk değerlerini çok önemli düzeyde arttırdığı gözlenmiştir. Evrişimsel sinir ağı modeli ile alternatif yapay öğrenme algoritmalarının tamamından çok daha başarılı sonuçlar elde edildiği ve mermer işlemedeki kalite kontrol uzmanlarının performanslarına yakın başarı düzeyinde sınıflandırma yapılabildiği ortaya konulmuştur.

Destekleyen Kurum

yok

Proje Numarası

yok

Teşekkür

Makalenin yazarları; bu çalışmada mermer levha görsellerini sağlayan ve değerli geri bildirimlerde bulunan Haz Mermer Sanayi ve Ticaret A.Ş. yöneticileri ve uzmanlarına teşekkürlerini sunar.

Kaynakça

  • Karaca, Z., Quality control of marble blocks, MERSEM 2003 IV. Marble Symposium, Afyon-Türkiye, 497-503, 18-19 Aralık, 2003.
  • Yavuz, A.B., Türk, N., Koca, M.Y., The use of micritic limestone as building stone: A case study of Akhisar beige marble in western Turkey, IMBS 2003 International Symposium of Industrial Minerals and Building Stones, İstanbul-Türkiye, 277–281, 15-18 Eylül, 2003.
  • Bianconi, F. et al, Automatic classification of granite tiles through colour and texture features, Expert Systems with Applications, 39 (12), 11212–11218, 2012.
  • Selver, M.A. et al, An automated industrial conveyor belt system using image processing and hierarchical clustering for classifying marble slabs, Robotics and Computer-Integrated Manufacturing, 27 (1), 164–176, 2011.
  • Unser, M., Sum and difference histograms for texture classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8 (1), 118–125, 1986.
  • Martinez-Alajarin, J., Luis-Delgado, J.D., Tomas-Balibrea, L.M., Automatic system for quality based classification of marble textures, IEEE Transactions on Systems, Man, and Cybernetics, Part C, 35 (4), 488–497, 2005.
  • Martinez-Alajarin, J., Luis-Delgado, J.D., Tomas-Balibrea, L.M., Classification of marble surfaces using wavelets, Electronics Letters, 39 (9), 714–715, 2003.
  • Doğan, H. ve Akay, O., Using AdaBoost classifiers in a hierarchical framework for classifying surface images of marble slabs, Expert Systems with Applications, 37 (12), 8814–8821, 2010.
  • Selver, M.A. et al, Cascaded and hierarchical neural networks for classifying surface images of marble slabs, IEEE Transactions on Systems, Man, and Cybernetics, Part C, 39 (4), 426–439, 2009.
  • Ferreira, A. ve Giraldi, G., Convolutional Neural Network approaches to granite tiles classification, Expert Systems with Applications, 84, 1–11, 2017.
  • Bianconi, F. et al, On comparing colour spaces from a performance perspective: Application to automated classification of polished natural stones, New Trends in Image Analysis and Processing, 9281, 71–78, 2015.
  • The MNIST Database of handwritten digits. http://yann.lecun.com/exdb/mnist/. Yayın tarihi 2001. Erişim tarihi Kasım 8, 2019.
  • The CIFAR-10 dataset. https://www.cs.toronto.edu/~kriz/cifar.html. Yayın tarihi 2009. Erişim tarihi Eylül 21, 2019.
  • Pençe, İ. ve Çeşmeli, M.Ş., Deep Learning in Marble Slabs Classification, Techno-Science, 2 (1), 21-26, 2019.
  • Goodfellow, I., Bengio, Y., Courville, A., Deep Learning, MIT Press, Cambridge, MA, A.B.D., 2016.
  • Buduma, N. ve Locascio, N., Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, O’ Reilly, A.B.D., 2017.
  • LeCun, Y. et al, Backpropagation applied to handwritten zip code recognition, Neural Computation, 1, 541–551, 1989.
  • Hahnloser, R. et al, Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit, Nature, 405, 947–951, 2000.
  • Filters. https://github.com/realka/DataPreparation. Yayın tarihi Temmuz 18, 2018. Erişim tarihi Mayıs 17, 2019.
  • Image Filtering. https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html. Yayın tarihi 2011. Erişim tarihi Nisan 22, 2019.
  • Aha, D.W., Kibler, D., Albert, M.K., Instance-based learning algorithms, Machine Learning, 6 (1), 37-66, 1991.
  • Han, J., Pei, J., Kamber, M., Data mining: concepts and techniques, Elsevier, Waltham, MA, A.B.D., 2011.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İdris Karaali Bu kişi benim 0000-0003-3110-2598

Mete Eminağaoğlu 0000-0003-2456-919X

Proje Numarası yok
Yayımlanma Tarihi 1 Aralık 2020
Gönderilme Tarihi 14 Nisan 2020
Kabul Tarihi 17 Ağustos 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 36 Sayı: 1

Kaynak Göster

APA Karaali, İ., & Eminağaoğlu, M. (2020). Mermer işlemede kalite sınıflandırması için evrişimsel sinir ağı modeli. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(1), 347-358. https://doi.org/10.17341/gazimmfd.720041
AMA Karaali İ, Eminağaoğlu M. Mermer işlemede kalite sınıflandırması için evrişimsel sinir ağı modeli. GUMMFD. Aralık 2020;36(1):347-358. doi:10.17341/gazimmfd.720041
Chicago Karaali, İdris, ve Mete Eminağaoğlu. “Mermer işlemede Kalite sınıflandırması için evrişimsel Sinir ağı Modeli”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, sy. 1 (Aralık 2020): 347-58. https://doi.org/10.17341/gazimmfd.720041.
EndNote Karaali İ, Eminağaoğlu M (01 Aralık 2020) Mermer işlemede kalite sınıflandırması için evrişimsel sinir ağı modeli. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 1 347–358.
IEEE İ. Karaali ve M. Eminağaoğlu, “Mermer işlemede kalite sınıflandırması için evrişimsel sinir ağı modeli”, GUMMFD, c. 36, sy. 1, ss. 347–358, 2020, doi: 10.17341/gazimmfd.720041.
ISNAD Karaali, İdris - Eminağaoğlu, Mete. “Mermer işlemede Kalite sınıflandırması için evrişimsel Sinir ağı Modeli”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/1 (Aralık 2020), 347-358. https://doi.org/10.17341/gazimmfd.720041.
JAMA Karaali İ, Eminağaoğlu M. Mermer işlemede kalite sınıflandırması için evrişimsel sinir ağı modeli. GUMMFD. 2020;36:347–358.
MLA Karaali, İdris ve Mete Eminağaoğlu. “Mermer işlemede Kalite sınıflandırması için evrişimsel Sinir ağı Modeli”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 36, sy. 1, 2020, ss. 347-58, doi:10.17341/gazimmfd.720041.
Vancouver Karaali İ, Eminağaoğlu M. Mermer işlemede kalite sınıflandırması için evrişimsel sinir ağı modeli. GUMMFD. 2020;36(1):347-58.