Seçici laser sinterlemede poliamid 12’ye dendritik bakır tozu ilavesinin etkisi
Yıl 2021,
Cilt: 36 Sayı: 1, 421 - 432, 01.12.2020
Aylin Bekem
,
Burçin Özbay
,
Mustafa Bulduk
Öz
Günümüzde polimer malzemeler ev eşyalarından mühendislik uygulamalarına kadar geniş bir kullanım alanına sahiptir. Bu nedenle özelliklerinin geliştirilmesi önemlidir. Katkı maddeleri ilavesi, polimer malzemelerin özelliklerini artırabilmektedir. Katkı ilave tekniği ve bileşimleri imalat yöntemine göre değişebilmektedir. Yeni bir üretim yöntemi olup kızılötesi lazer ışını ile polimer tozlarının sinterlenmesine dayanan Seçici Lazer Sinterleme (SLS) toz yataklı eklemeli imalat metodunda da katkı maddelerinin kullanılması mümkündür. Bu metotta katkı kullanımı çok yaygın olmasa da en çok tercih edilen katkı maddeleri seramik esaslı inorganik malzemelerdir. Bununla birlikte, ince metalik parçacıklar da katkı maddesi olarak kullanılabilir. Bu çalışmada dendritik bakır tozu katkılı poliamid 12'nin SLS ile prosesi incelenmiştir. İki farklı katkı içeriğindeki toz karışımları proses parametreleri belirlemek amacıyla karakterize edilmiş ve artan enerji yoğunluğunun kullanılması gerektiği saptanmıştır. Beş farklı parametre kullanılarak üretilen numunelerin fiziksel ve mekanik testleri sonucu katkı ilavesiyle eğme özellikleri ve boyutsal hassasiyet düşerken, yüzey pürüzlülüğü değişmemiş ve depolama modülü iyileşme göstermiştir.
Kaynakça
- 1. Tiwari S.K., Pande S., Agrawal S., Bobade S.M., Selection of Selective Laser Sintering Materials for Different Applications, Rapid Prototyping Journal, 21 (6), 630–648, 2015.
- 2. Ngoa T.D., Kashania A., Imbalzanoa G., Nguyena K.T.Q., Hui D., Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges, Composites Part B, 143, 172-196, 2018.
- 3. Kayacan M.C., Delikanlı Y.E., Duman B., Özsoy K., Ti6Al4V Toz Alaşımı Kullanılarak SLS ile Üretilen Geçişli (Değişken) Gözenekli Numunelerin Mekanik Özelliklerinin İncelenmesi, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 127-143, 2018.
- 4. Bourell D., Kruth J.P, Leu M., Levy G., Rosen D., Beese A.M., Clare A., Materials for Additive Manufacturing, CIRP Annals-Manufacturing Technology 66, 659–681, 2017.
- 5. Wong K.V., Hernandez A., A Review of Additive Manufacturing, ISRN Mechanical Engineering, 2012, 1-10, 2012.
- 6. Gibson I., Rosen D., Stucker B. Additive Manufacturing Technologies, Springer, New York, A.B.D., 2015.
- 7. Kruth, J.P., Wang, X., Laoui, T., Froyen, L., Laser and Materials in Selective Laser Sintering, Assembly
Automation, 23 (4), 357-371, 2003.
- 8. Schmid M., Laser Sintering with Plastics Technology, Processes, and Materials, Hanser Publications, Cincinnati, A.B.D., 2018.
- 9. Schmid M., Wegener K., Additive manufacturing: Polymers Applicable for Laser Sintering (LS), International Conference on Manufacturing Engineering and Materials (ICMEM 2016), Nový Smokovec-Slovakya, 457-464, 6-10 Haziran, 2016.
- 10. Kruth J.P., Levy G., Schnidel R., Craeghs T., Yasa E., Consolidation of Polymer Powders by Selective Laser Sintering, 3rd International PMI Conference (PMI2008), Ghent-Belçika, 1-16, Eylül, 2008.
- 11. Goodridge R.D., Tuck C.J., Hague R.J.M., Laser Sintering of Polyamides and Other Polymers, Progress in Materials Science, 57, 229-267, 2012.
- 12. Verbelen L., Dadbakhsh S., Van den Eynde M., Kruth J.P., Goderis B., Puyvelde P.V., Characterization of Polyamide Powders for Determination of Laser Sintering Processability, European Polymer Journal, 75, 163-174, 2016.
- 13. Schmid M., Amado A., Wegener K., Materials Perspective of Polymers for additive manufacturing with Selective Laser Sintering, Journal of Materials Research, 29 (17), 1824-1832, 2014.
- 14. Salmoria G.V., Leite J.L., Vieira L.F., Pires A.T.N., Roesler C.R.M., Mechanical Properties of PA6/PA12 Blend Specimens Prepared by Selective Laser Sintering, Polymer Testing, 31, 411–416, 2012.
- 15. Cano, A.J., Salazar, A., Rodríguez, J., Effect of Temperature on the Fracture Behavior of Polyamide 12 and Glass-Filled Polyamide 12 Processed by Selective Laser Sintering, Engineering Fracture Mechanics, 203, 66-80, 2018.
16. Seltzer R., Martín de la Escalera F., Segurado J., Effect of water conditioning on the fracture behavior of PA12 composites processed by selective laser sintering, Materials Science and Engineering A, 528, 6927–6933, 2011.
- 17. Mousa A.A., The Effects of Content and Surface Modification of Filler on the Mechanical Properties of Selective Laser Sintered Polyamide 12 Composites, Jordan Journal of Mechanical and Industrial Engineering, 8 (5), 265-274, 2014.
- 18. Athreya, S.R., Kalaitzidou, K., Das S., Processing and Characterization of a Carbon Black-Filled Electrically Conductive Nylon-12 Nanocomposite Produced by Selective Laser Sintering, Materials Science and Engineering A, 527 (10–11), 2637-2642, 2010.
- 19. Jing W., Hui C., Qiong W., Hongbo L., Zhanjun L., Surface Modification of Carbon fibers and the Selective Laser Sintering of Modified Carbon Fiber/Nylon 12 Composite Powder, Materials and Design, 116, 253–260, 2017.
- 20. Hon, K.K.B., Gill, T.J., Selective Laser Sintering of SiC/Polyamide Composites, CIRP Annals, 52 (1), 173-176, 2003.
- 21. Goodridge R.D., Shofner M.L., Hague R.J.M., McClelland M., Schlea M.R., Tuck C.J., Johnson R.B., Processing of a Polyamide-12/Carbon Nanofibre Composite by Laser Sintering, Polymer Testing, 30, 94-100, 2011.
- 22. Gill T. J., Hon K.K.B., Experimental İnvestigation into the Selective Laser Sintering of Silicon Carbide Polyamide Composites, Proc. Instn Mech. Engrs Part B: J. Engineering Manufacture, 218 (10), 1249-1256, 2004.
- 23. Zhang Y., Hao L., Savalani M.M., Harris R.A., Tanner K.E., Characterization and Dynamic Mechanical Analysis of Selective Laser Sintered Hydroxyapatite-Filled Polymeric Composites, Journal of Biomedical Materials Research Part A, 86 (3), 607-616, 2008.
- 24. Mazzoli, A., Moriconi, G., Pauri, M.G., Characterization of an Aluminum-Filled Polyamide Powder for Applications in Selective Laser Sintering, Materials & Design, 28(3), 993-1000, 2007.
- 25. Bassoli E., Gatto A., Iuliano L., Joining Mechanisms and Mechanical Properties of PA Composites Obtained by Selective Laser Sintering, Rapid Prototyping Journal, 18 (2), 100-108, 2012.
- 26. Violante, M.G., Iuliano, L. and Minetola, P., Design and Production of Fixtures for Free-Form Components Using Selective Laser Sintering, Rapid Prototyping Journal, 13 (1), 30-37, 2007.
- 27. Lanzl, L., Wudy, K., Greiner, S., Drummer, D., Selective Laser Sintering of Copper Filled Polyamide 12: Characterization of Powder Properties and Process Behavior, Polymer Composites, 40, 1801-1809, 2018.
- 28. Balzereit S., Proes F., Altstädt V., Emmelmann C., Properties of Copper Modified Polyamide 12-Powders and Their Potential for the Use as Laser Direct Structurable Electronic Circuit Carriers, Additive Manufacturing, 23, 347-354, 2018.
- 29. Wudy K., Lanzl L., Drummer D., Selective Laser Sintering of Filled Polymer Systems: Bulk Properties and Laser Beam Material interaction, Physics Procedia, 83, 991-1002, 2016.
- 30. Yang J., Shi Y., Yan C., Selective Laser Sintering of Polyamide 12/Potassium Titanium Whisker Composites, Journal of Applied Polymer Science, 117 (4), 2196-2204, 2010.
- 31. Goodridge R.D., Dalgarno K.W., Wood D.J., Indirect Selective Laser Sintering of an Apatite–Mullite Glass–Ceramic for Potential Use in Bone Replacement Applications, Proceedings of IMechE Part H: J Eng Med, 220, 57-68, 2006.
- 32. Schmid M., Wegener K., Thermal and Molecular Properties of Polymer Powders for Selective Laser Sintering (SLS), AIP Conference Proceedings, 1664, 160009, 2015.
- 33. Móczó J. ve Pukánszky B., Particulate Fillers in Thermoplastics, Fillers for Polymer Applications, Editör:. Rothon R, Springer, Chester, UK, 51-93, 2017.