Research Article
BibTex RIS Cite

Ön sertleştirilmiş Toolox 44 ve Nimax kalıp çeliklerinin işlenebilirliği üzerine deneysel çalışma

Year 2021, Volume: 36 Issue: 4, 1939 - 1948, 02.09.2021
https://doi.org/10.17341/gazimmfd.641824

Abstract

Bu çalışmada, kalıp çelikleri arasında yer alan Nimax ve Toolox 44 malzemelerinin frezeleme işleminde işlenebilirliği deneysel olarak araştırılmıştır. Kesme deneyleri, üçer farklı kesme hızı (50-70-90 m/dak), ilerleme (0,04-0,08-0,12 mm/diş) ve sabit kesme derinliği (1,5 mm) kullanılarak CVD-AlCrN kaplamalı karbür parmak freze ile gerçekleştirilmiştir. Deneyler sonucunda, aynı koşullar altında Toolox 44’ün işlenmesinde Nimax’a göre daha fazla kesme kuvveti ve yüzey pürüzlülüğünün oluştuğu gözlenmiştir. Nimax malzemenin işlenmesinde optimum kesme parametreleri yüksek kesme hızı ve düşük ilerleme (V:90 m/dak, f:0,04 mm/diş) iken, Toolox 44’te ise düşük kesme hızı ve ilerleme (V:50 m/dak, f:0,04 mm/diş) olarak tespit edilmiştir. Kesme hızının 50 m/dak’tan 90 m/dak’a artması ile Toolox 44’te kesme kuvveti 0,04-0,08 ve 0,12 mm/diş ilerleme değerlerinde sırasıyla %140,139; %11,286 ve %15,179 artarken, Nimax’ta ise %3,221; %2,974 ve %5,062 azaldığı gözlenmiştir. Aynı şekilde kesme hızının artması ile Toolox 44’te yüzey pürüzlülüğü 0,04-0,08 ve 0,12 mm/diş ilerleme değerlerinde sırasıyla %78,162; %34,721 ve %8,878 artarken, Nimax’ta ise %3,515; %30,027 ve %9,806 azaldığı belirlenmiştir. İşlenmiş yüzey altı görüntülerine göre Nimax’ta işlenmiş yüzeyde ilerlemenin artması ile çukur oluşurken, Toolox 44’te ise deforme olmuş ve ısıdan etkilenmiş tabaka meydana gelmiştir. Ayrıca, aynı ilerleme parametrelerinde Toolox 44’ün işlenmiş yüzeylerinde Nimax’a göre daha fazla ilerleme izlerinin oluştuğu ve bunun da yüzey pürüzlülüğünü arttırdığı tespit edilmiştir.

Thanks

Bu çalışma kapsamında yazarlar, kesici takım desteği ile katkı sağlayan Karcan Cutting Tools’a teşekkür eder.

References

  • [1] Hoseiny H., Klement U., Sotskovszki P., Andersson J., Comparison of the microstructures in continuous-cooled and quench-tempered pre-hardened mould steels. Material Design, 32(1), 21-28, 2011.
  • [2] Hoseiny H., Högman B., Andrén H.O., Klement U., Ståhl J.E., Thuvander A., The influence of microstructure and mechanical properties on the machinability of martensitic and bainitic prehardened mould steels. International Journal of Material Research, 104(8), 748-761, 2013.
  • [3] Hippenstiel F. Handbook of plastic mould steels, Edelstahlwerke Buderus AG., 2004.
  • [4] Lee F. Enhancing plastic mould steel tooling performance with Nimax, (MI): Materials Science and Technology (MS&T), Detroit, 2007.
  • [5] Hansson P., Modern prehardened tool steels in die-casting applications. Materials and Manufacturing Processes, 24(7-8), 824-827, 2009.
  • [6] Martínez-Mateo I., Carrión-Vilches F.J., Sanes J., Bermúdez M.D., Surface damage of mold steel and its influence on surface roughness of injection molded plastic parts. Wear, 271(9-10), 2512-2516, 2011.
  • [7] Boujelbene M., Moisan A., Tounsi N., Brenier B., Productivity enhancement in dies and molds manufacturing by the use of C1 continuous tool path. International Journal of Machine Tools and Manufacture, 44(1), 101-107, 2004
  • [8] Bermúdez M.D., Iglesias P., Jiménez A.E., Martínez-Nicolás G. Influence of sliding frequency on reciprocating wear of mold steel with different microstructures. Wear, 267(11),1784-1790, 2009.
  • [9] Kalpakjian S. Manufacturing processes for engineering materials, Addison-Wesley Publishing Company, 1985.
  • [10] Zdebski D., Allen D.M., Stephenson D.J., Hedge J., Ducros C., Sanchette F., An analysis of the effects of nanolayered nitride coatings on the lifetimes and wear of tungsten carbide micromilling tools. In Cranfield Multi-Strand Conference Creating Wealth Through Research and Innovation, 6, 281, May 2008.
  • [11] Isik Y., Investigating the machinability of tool steels in turning operations. Materials and Design, 28(5), 1417-1424, 2007.
  • [12] Ronkainen H., Nieminen I., Holmberg K., Leyland A., Matthews A., Matthes B., Broszeit E., Evaluation of some titanium-based ceramic coatings on high speed steel cutting tools. Surface and Coatings Technology, 49(1-3), 468-473, 1991.
  • [13] Wojciechowski S., Mrozek K., Mechanical and technological aspects of micro ball end milling with various tool inclinations. International Jounal of Mechanical Sciences, 134, 424-435, 2017.
  • [14] Daghini L., Nicolescu C.M., Influence of inserts coating and substrate on Toolox 44 machining. In Swedish Production Symposium'07, Sweden, 1-8, 2007.
  • [15] Wojciechowski S., Wiackiewicz M., Krolczyk G.M., Study on metrological relations between instant tool displacements and surface roughness during precise ball end milling. Measurement, 129, 686-694, 2018.
  • [16] https://www.uddeholm.com/files/PB_Uddeholm_nimax_english.pdf , Last access date: 31 October 2019.
  • [17] https://www.ssab.com/products/brands/toolox/products/toolox-44?accordion=downloads, Last access date: 31 October 2019.
  • [18] Yao Y., Zhu H., Huang C., Wang J., Zhang P., Yao P., Investigation on chip formation and surface integrity in micro end milling of maraging steel. International Journal of Advanced Manufacturing Technology,1-12, 2019.
  • [19] Aykut Ş., Bagci E., Kentli A., Yazıcıoğlu O., Experimental observation of tool wear, cutting forces and chip morphology in face milling of cobalt based super-alloy with physical vapour deposition coated and uncoated tool. Materials and Design, 28(6), 1880-1888, 2007.
  • [20] Nayak M., Sehgal R., Effect of tool material properties and cutting conditions on machinability of AISI D6 steel during hard turning. Arabian Journal for Science Engineering, 40(4), 1151-1164, 2015.
  • [21] Olovsjö S., Wretland A., Sjöberg G., The effect of grain size and hardness of wrought Alloy 718 on the wear of cemented carbide tools. Wear, 268(9-10), 1045-1052, 2010.
  • [22] Demir H., The effects of microalloyed steel pre-heat treatment on microstructure and machinability. International Journal of Advanced Manufacturing Technology, 35(9-10), 1041-1046, 2008.
  • [23] Chinchanikar S., Choudhury S.K., Investigations on machinability aspects of hardened AISI 4340 steel at different levels of hardness using coated carbide tools. International Journal of Refractory Metals and Hard Materials, 38, 124-133, 2013.
  • [24]Wang B., Liu Z., Cutting performance of solid ceramic end milling tools in machining hardened AISI H13 steel. International Journal of Refractory Metals and Hard Materials, 55, 24-32, 2016.
  • [25] Ollilainen V., Hurmola H., Pöntinen H., Mechanical properties and machinability of a high-strength, medium-carbon, microalloyed steel. Journal of Materials for Energy Systems, 5(4), 222-232, 1984.
  • [26] Wang C., Ding F., Tang D., Zheng L., Li S., Xie Y., Modeling and simulation of the high-speed milling of hardened steel SKD11 (62 HRC) based on SHPB technology. International Journal of Machine Tools and Manufacture, 108, 13-26, 2016.
  • [27] Gong F., Zhao J., Jiang Y., Tao H., Li Z., Zang J., Fatigue failure of coated carbide tool and its influence on cutting performance in face milling SKD11 hardened steel. International Journal of Refractory Metals and Hard Materials, 64, 27-34, 2017.
  • [28] Çiftçi İ., The Influence of Cutting Tool Coating and Cutting Speed on Cutting Forces and Surface Roughness in Machining of Austenitic Stainless Steels. Journal of the Faculty of Engineering and Architecture of Gazi University, 20(2), 205-209, 2005.
  • [29] Zaman H.A., Sharif S., Kim D.W., Idris M.H., Suhaimi M.A., Tumurkhuyag Z., Machinability of Cobalt-based and Cobalt Chromium Molybdenum Alloys-A Review. Procedia Manufacturing, 11, 563-570, 2017.
  • [30] Shaw M.C., Vyas A., Chip formation in the machining of hardened steel. CIRP Annals, 42(1), 29-33, 1993.
Year 2021, Volume: 36 Issue: 4, 1939 - 1948, 02.09.2021
https://doi.org/10.17341/gazimmfd.641824

Abstract

References

  • [1] Hoseiny H., Klement U., Sotskovszki P., Andersson J., Comparison of the microstructures in continuous-cooled and quench-tempered pre-hardened mould steels. Material Design, 32(1), 21-28, 2011.
  • [2] Hoseiny H., Högman B., Andrén H.O., Klement U., Ståhl J.E., Thuvander A., The influence of microstructure and mechanical properties on the machinability of martensitic and bainitic prehardened mould steels. International Journal of Material Research, 104(8), 748-761, 2013.
  • [3] Hippenstiel F. Handbook of plastic mould steels, Edelstahlwerke Buderus AG., 2004.
  • [4] Lee F. Enhancing plastic mould steel tooling performance with Nimax, (MI): Materials Science and Technology (MS&T), Detroit, 2007.
  • [5] Hansson P., Modern prehardened tool steels in die-casting applications. Materials and Manufacturing Processes, 24(7-8), 824-827, 2009.
  • [6] Martínez-Mateo I., Carrión-Vilches F.J., Sanes J., Bermúdez M.D., Surface damage of mold steel and its influence on surface roughness of injection molded plastic parts. Wear, 271(9-10), 2512-2516, 2011.
  • [7] Boujelbene M., Moisan A., Tounsi N., Brenier B., Productivity enhancement in dies and molds manufacturing by the use of C1 continuous tool path. International Journal of Machine Tools and Manufacture, 44(1), 101-107, 2004
  • [8] Bermúdez M.D., Iglesias P., Jiménez A.E., Martínez-Nicolás G. Influence of sliding frequency on reciprocating wear of mold steel with different microstructures. Wear, 267(11),1784-1790, 2009.
  • [9] Kalpakjian S. Manufacturing processes for engineering materials, Addison-Wesley Publishing Company, 1985.
  • [10] Zdebski D., Allen D.M., Stephenson D.J., Hedge J., Ducros C., Sanchette F., An analysis of the effects of nanolayered nitride coatings on the lifetimes and wear of tungsten carbide micromilling tools. In Cranfield Multi-Strand Conference Creating Wealth Through Research and Innovation, 6, 281, May 2008.
  • [11] Isik Y., Investigating the machinability of tool steels in turning operations. Materials and Design, 28(5), 1417-1424, 2007.
  • [12] Ronkainen H., Nieminen I., Holmberg K., Leyland A., Matthews A., Matthes B., Broszeit E., Evaluation of some titanium-based ceramic coatings on high speed steel cutting tools. Surface and Coatings Technology, 49(1-3), 468-473, 1991.
  • [13] Wojciechowski S., Mrozek K., Mechanical and technological aspects of micro ball end milling with various tool inclinations. International Jounal of Mechanical Sciences, 134, 424-435, 2017.
  • [14] Daghini L., Nicolescu C.M., Influence of inserts coating and substrate on Toolox 44 machining. In Swedish Production Symposium'07, Sweden, 1-8, 2007.
  • [15] Wojciechowski S., Wiackiewicz M., Krolczyk G.M., Study on metrological relations between instant tool displacements and surface roughness during precise ball end milling. Measurement, 129, 686-694, 2018.
  • [16] https://www.uddeholm.com/files/PB_Uddeholm_nimax_english.pdf , Last access date: 31 October 2019.
  • [17] https://www.ssab.com/products/brands/toolox/products/toolox-44?accordion=downloads, Last access date: 31 October 2019.
  • [18] Yao Y., Zhu H., Huang C., Wang J., Zhang P., Yao P., Investigation on chip formation and surface integrity in micro end milling of maraging steel. International Journal of Advanced Manufacturing Technology,1-12, 2019.
  • [19] Aykut Ş., Bagci E., Kentli A., Yazıcıoğlu O., Experimental observation of tool wear, cutting forces and chip morphology in face milling of cobalt based super-alloy with physical vapour deposition coated and uncoated tool. Materials and Design, 28(6), 1880-1888, 2007.
  • [20] Nayak M., Sehgal R., Effect of tool material properties and cutting conditions on machinability of AISI D6 steel during hard turning. Arabian Journal for Science Engineering, 40(4), 1151-1164, 2015.
  • [21] Olovsjö S., Wretland A., Sjöberg G., The effect of grain size and hardness of wrought Alloy 718 on the wear of cemented carbide tools. Wear, 268(9-10), 1045-1052, 2010.
  • [22] Demir H., The effects of microalloyed steel pre-heat treatment on microstructure and machinability. International Journal of Advanced Manufacturing Technology, 35(9-10), 1041-1046, 2008.
  • [23] Chinchanikar S., Choudhury S.K., Investigations on machinability aspects of hardened AISI 4340 steel at different levels of hardness using coated carbide tools. International Journal of Refractory Metals and Hard Materials, 38, 124-133, 2013.
  • [24]Wang B., Liu Z., Cutting performance of solid ceramic end milling tools in machining hardened AISI H13 steel. International Journal of Refractory Metals and Hard Materials, 55, 24-32, 2016.
  • [25] Ollilainen V., Hurmola H., Pöntinen H., Mechanical properties and machinability of a high-strength, medium-carbon, microalloyed steel. Journal of Materials for Energy Systems, 5(4), 222-232, 1984.
  • [26] Wang C., Ding F., Tang D., Zheng L., Li S., Xie Y., Modeling and simulation of the high-speed milling of hardened steel SKD11 (62 HRC) based on SHPB technology. International Journal of Machine Tools and Manufacture, 108, 13-26, 2016.
  • [27] Gong F., Zhao J., Jiang Y., Tao H., Li Z., Zang J., Fatigue failure of coated carbide tool and its influence on cutting performance in face milling SKD11 hardened steel. International Journal of Refractory Metals and Hard Materials, 64, 27-34, 2017.
  • [28] Çiftçi İ., The Influence of Cutting Tool Coating and Cutting Speed on Cutting Forces and Surface Roughness in Machining of Austenitic Stainless Steels. Journal of the Faculty of Engineering and Architecture of Gazi University, 20(2), 205-209, 2005.
  • [29] Zaman H.A., Sharif S., Kim D.W., Idris M.H., Suhaimi M.A., Tumurkhuyag Z., Machinability of Cobalt-based and Cobalt Chromium Molybdenum Alloys-A Review. Procedia Manufacturing, 11, 563-570, 2017.
  • [30] Shaw M.C., Vyas A., Chip formation in the machining of hardened steel. CIRP Annals, 42(1), 29-33, 1993.
There are 30 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Şenol Bayraktar 0000-0001-8226-0188

Gültekin Uzun 0000-0002-6820-8209

Publication Date September 2, 2021
Submission Date November 2, 2019
Acceptance Date March 21, 2021
Published in Issue Year 2021 Volume: 36 Issue: 4

Cite

APA Bayraktar, Ş., & Uzun, G. (2021). Ön sertleştirilmiş Toolox 44 ve Nimax kalıp çeliklerinin işlenebilirliği üzerine deneysel çalışma. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(4), 1939-1948. https://doi.org/10.17341/gazimmfd.641824
AMA Bayraktar Ş, Uzun G. Ön sertleştirilmiş Toolox 44 ve Nimax kalıp çeliklerinin işlenebilirliği üzerine deneysel çalışma. GUMMFD. September 2021;36(4):1939-1948. doi:10.17341/gazimmfd.641824
Chicago Bayraktar, Şenol, and Gültekin Uzun. “Ön sertleştirilmiş Toolox 44 Ve Nimax kalıp çeliklerinin işlenebilirliği üzerine Deneysel çalışma”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, no. 4 (September 2021): 1939-48. https://doi.org/10.17341/gazimmfd.641824.
EndNote Bayraktar Ş, Uzun G (September 1, 2021) Ön sertleştirilmiş Toolox 44 ve Nimax kalıp çeliklerinin işlenebilirliği üzerine deneysel çalışma. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 4 1939–1948.
IEEE Ş. Bayraktar and G. Uzun, “Ön sertleştirilmiş Toolox 44 ve Nimax kalıp çeliklerinin işlenebilirliği üzerine deneysel çalışma”, GUMMFD, vol. 36, no. 4, pp. 1939–1948, 2021, doi: 10.17341/gazimmfd.641824.
ISNAD Bayraktar, Şenol - Uzun, Gültekin. “Ön sertleştirilmiş Toolox 44 Ve Nimax kalıp çeliklerinin işlenebilirliği üzerine Deneysel çalışma”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/4 (September 2021), 1939-1948. https://doi.org/10.17341/gazimmfd.641824.
JAMA Bayraktar Ş, Uzun G. Ön sertleştirilmiş Toolox 44 ve Nimax kalıp çeliklerinin işlenebilirliği üzerine deneysel çalışma. GUMMFD. 2021;36:1939–1948.
MLA Bayraktar, Şenol and Gültekin Uzun. “Ön sertleştirilmiş Toolox 44 Ve Nimax kalıp çeliklerinin işlenebilirliği üzerine Deneysel çalışma”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 36, no. 4, 2021, pp. 1939-48, doi:10.17341/gazimmfd.641824.
Vancouver Bayraktar Ş, Uzun G. Ön sertleştirilmiş Toolox 44 ve Nimax kalıp çeliklerinin işlenebilirliği üzerine deneysel çalışma. GUMMFD. 2021;36(4):1939-48.