Research Article
BibTex RIS Cite

Superelastic anisotropy and meso-scale interface regions in textured NiTi sheets

Year 2021, Volume: 36 Issue: 4, 2121 - 2134, 02.09.2021
https://doi.org/10.17341/gazimmfd.754732

Abstract

Typical manufacturing processes of NiTi shape memory alloys (SMAs) involve drawing and rolling operations leading to crystallographic texture and superelastic anisotropic behavior. Therefore, an in-depth understanding of directional material properties and underlying mechanisms may help to guide the production process to create suitable textures for applications requiring different mechanical properties. It is well known that superelastic NiTi SMAs exhibit localized deformation during uniaxial tensile loading. During the stress-induced martensitic transformation (SIMT), macroscopic deformation occurs only in the meso-scale interface regions between the fully martensitic and the fully austenitic regions. In case of localized deformation, the detailed characterization of these transition regions is therefore of crucial practical importance. In this study, the effects of crystallographic texture and specimen geometry on mechanical behavior and local deformation characteristics of polycrystalline NiTi superelastic sheets were systematically analyzed. Local surface strain fields are recorded during deformation by digital image correlation (DIC) in order to characterize interface regions in detail. The results show that the mechanical material behavior has a clear directional dependency and that the orientation/texture effect is reduced with decreasing width/thickness ratio of specimen. Furthermore, it is shown that the martensite/austenite interface formed in localized deformation has different angles to the load direction for different sample geometries and orientations and that the interface angle changes continuously during SIMT. The results provide new insights into the interaction of crystallographic texture, SIMT characteristics, superelastic anisotropy and specimen geometry which is essential for engineering applications of NiTi.

References

  • Referans1 Otsuka K., Wayman C.M., Shape memory materials, Cambridge University Press, Cambridge, 1998.
  • Referans2 Liu Y., Detwinning process and its anisotropy in shape memory alloys, Smart Materials, 4234, 82-93, 2001.
  • Referans3 Otsuka K., Ren X., Physical metallurgy of Ti-Ni-based shape memory alloys, Progress in Materials Science, 50, 511-678, 2005.
  • Referans4 Miyazaki S., Fu Y.Q., Huang W.M., Thin Film Shape Memory Alloys: Fundamentals and Device Applications, Cambridge University Press, Cambridge, 2009.
  • Referans5 Grassi E.N.D., Chagnon G., Oliveira H.M.R., Favier D., Anisotropy and Clausius-Clapeyron relation for forward and reverse stress-induced martensitic transformations in polycrystalline NiTi thin walled tubes, Mechanics of Materials, 2020.
  • Referans6 Reedlunn B., Churchill C.B., Nelson E.E., Daly S.H., Shaw J.A., Tension, compression and bending of superelastic shape memory alloy tubes, J. Mech. Phys. Solids, 63, 506-537, 2014.
  • Referans7 Bhardwaj A., Gupta A.K., Padisala S.K., Poluri K., Characterization of mechanical and microstructural properties of constrained groove pressed nitinol shape memory alloy for biomedical applications, Materials Science & Engineering C, 102, 730-742, 2019. Referans8 Li H.F., Nie F.L., Zheng Y.F., Cheng Y., Wei S.C., Valiev R.Z., Nanocrystalline Ti49.2Ni50.8 shape memory alloy as orthopaedic implant material with better performance, Journal of Materials Science & Technology, 35, 2156-2162, 2019.
  • Referans9 Kadir M.R.A., Dewi D.E.O., Jamaludin M.N., Nafea M., Ali M.S.M., A multi-segmented shape memory alloy-based actuator system forendoscopic applications, Sensors and Actuators A: Physical, 296, 92-100, 2019.
  • Referans10 Modabberifar M., Spenko M., A Shape Memory Alloy-Actuated Gecko-Inspired Robotic Gripper, Sensors and Actuators A: Physical, 2018.
  • Referans11 Jiang D., Kyriakides S., Landis C.M., Propagation of Phase Transformation Fronts in Pseudoelastic NiTi Tubes Under Uniaxial Tension, Extreme Mechanics Letters, 2017.
  • Referans12 Bian X., Saleh A.A., Pereloma E.V., Davies C.H.J., Gazder A.A., A digital image correlation study of a NiTi alloy subjected to monotonic uniaxial and cyclic loading-unloading in tension, Materials Science & Engineering A, 726, 102-112, 2018.
  • Referans13 Zheng L., He Y., Moumni Z., Lüders-like band front motion and fatigue life of pseudoelastic polycrystalline NiTi shape memory alloy, Scripta Materialia, 123, 46-50, 2016.
  • Referans14 Lu H.-H., Guo H.-K., Liang W., Li J.-C., Zhang G.-W., Li T.-T., High-temperature Laves precipitation and its effects on recrystallisation behaviour and Lüders deformation in super ferritic stainless steels, Materials and Design, 188, 108477, 2020.
  • Referans15 Gao S., Bai Y., Zheng R., Tian Y., Mao W., Shibata A., Tsuji N., Mechanism of huge Lüders-type deformation in ultrafine grained austenitic stainless steel, Scripta Materialia, 159, 28-32, 2019.
  • Referans16 Beardsmore D.W., Quinta da Fonseca J., Romero J., English C.A., Ortner S.R., Sharples J., Sherry A.H., Wilkes M.A., Study of Lüders phenomena in reactor pressure vessel steels, Materials Science & Engineering A, 588, 151-166, 2013.
  • Referans17 Hallai J.F., Kyriakides S., Underlying material response for Lüders-like instabilities, Int. J. of Plasticity, 47, 1-12, 2013.
  • Referans18 Wang L., Ma L., Liu C., Zhong Z.Y., Luo S.N., Texture-induced anisotropic phase transformation in a NiTi shape memory alloy, Materials Science & Engineering A, 2018.
  • Referans19 Weafer F.M., Guo Y., Bruzzi M.S., The effect of crystallographic texture on stress-induced martensitic transformation in NiTi: A computational analysis, J. of Mechanical Beavior of Biomedical Materials, 53, 210-217, 2016.
  • Referans20 Gall K., Sehitoglu H., The role of texture in tension-compression asymmetry in polycrystalline NiTi, Int. J. Plast. 15, 69-92, 1999.
  • Referans21 Kim K., Daly S., The effect of texture on stress-induced martensite formation in nickel–titanium, Smart Mater. Struct. 22, 075012, 2013.
  • Referans22 Liu Y., The superelastic anisotropy in a NiTi shape memory alloy thin sheet, Acta Materialia, 2015.
  • Referans23 ASTM Standard 2004-03: Standard test method for transformation temperature measurement of nickel-titanium shape memory alloy by thermal analysis, 2003.
  • Referans24 Zhou T., Yu C., Kang G., Kan Q., Fang D., A crystal plasticity based constitutive model accounting for R phase and two-step phase transition of polycrystalline NiTi shape memory alloys, International Journal of Solids and Structures, 2020.
  • Referans25 Feng B., Kong X., Hao S., Liu Y., Yang Y., Yang H., Guo F., Jiang D., Wang T., Ren Y., Cui L., In-situ synchrotron high energy X-ray diffraction study of micro-mechanical behaviour of R phase reorientation in nanocrystalline NiTi alloy, Acta Materialia, 2020.
  • Referans26 Mehdikhani M., Aravand M., Sabuncuoglu B., Callens M.G., Lomov S.V., Gorbatikh L., Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation, Composite Structures, 140, 192-201, 2016.
  • Referans27 Hung P.-C., Voloshin A.S., In-plane Strain Measurement by Digital Image Correlation, J. of the Braz. Soc. of Mech. Sci. & Eng., XXV (3), 215-221, 2003.
  • Referans28 GOM Gesellschaft für optische Messtechnik mbH (Braunschweig, Germany), Software “ARAMIS” v6.3.1 Optical Deformation Analysis, 2010.
  • Referans29 Gao S., Yi S., Experimental study on the anisotropic behavior of textured NiTi pseudoelastic shape memory alloys, Materials Science & Engineering A, 362, 107-111, 2003.
  • Referans30 Sridhar S.K., Stebner A.P., Rollett A.D., Statistical variations in predicted martensite variant volume fractions in superelastically deformed NiTi modeled using habit plane variants versus correspondence variants, International Journal of Solids and Structures, 2020.
  • Referans31 Chang S.H., Wu S.K., Textures in cold-rolled and annealed Ti50Ni50 shape memory alloy, Scripta Materialia, 50, 937-941, 2004.
  • Referans32 Inoue H., Miwa N., Inakazu N., Texture and Shape Memory Strain in TiNi Alloy Sheets, Acta Mater., 44 (12), 48254834, 1996.
  • Referans33 Miyazaki S., No V.H., Kitamura K., Khantachawana A., Hosoda H., Texture of Ti-Ni rolled thin plates and sputter-deposited thin films, International Journal of Plasticity, 16, 1135-1154, 2000.
  • Referans34 Mulder J.H., Thoma P.E., Beyer J., Anisotropy of Thermal Fatigue Properties of Cold-Rolled TiNi Sheet, Materials Characterization, 32, 161-168, 1994.
  • Referans35 Liu Y., Xie Z., Van Humbeeck J., Delaey L., Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys, Acta Mater., 46 (12), 4325-4338, 1998.
  • Referans36 Shaw J.A., Kyriakides S., Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, International J. of Plasticity, 13 (10), 837-871, 1998.
  • Referans37 Shaw J.A., Kyriakides S., On the nucleation and propagation of phase transformation fronts in a NiTi alloy, Acta Mater., 45 (2), 683-700, 1997.
  • Referans38 Mao S.C., Han X.D., Zhang Z., Wu M.H., The nano- and mesoscopic cooperative collective mechanisms of inhomogenous elastic-plastic transitions in polycrystalline TiNi shape memory alloys, Journal of Applied Physics, 101, 103522, 2007.
  • Referans39 Daly S., Ravichandran G., Bhattacharya K., Stress-induced martensitic phase transformation in thin sheets of Nitinol, Acta Mater., 55, 3593-3600, 2007.
  • Referans40 He Y.J., Sun Q.P., Macroscopic equilibrium domain structure and geometric compatibility in elastic phase transition of thin plates, International Journal of Mechanical Sciences, 52, 198-211, 2010.

Tekstüre NiTi levhalarda süperelastik anizotropi ve mezo ölçekli arayüzey bölgeleri

Year 2021, Volume: 36 Issue: 4, 2121 - 2134, 02.09.2021
https://doi.org/10.17341/gazimmfd.754732

Abstract

NiTi şekil hafızalı alaşımların tipik üretim yöntemleri arasında, malzemede kristalografik tekstüre ve süperelastik anizotropik davranışa yol açan çekme ve haddeleme işlemleri bulunmaktadır. Bu nedenle, yöne bağlı malzeme özelliklerinin ve altta yatan mekanizmaların derinlemesine araştırılarak anlaşılması; farklı mekanik özellikler gerektiren uygulamalar için uygun malzeme tekstürü oluşturabilmek adına üretim prosesisin dizayn edilmesine yardımcı olacaktır. Süperelastik NiTi alaşımların, çekme yüklenmesi altında lokalize deformasyon sergilediği bilinmektedir. Gerilim kaynaklı indüklenmiş martenzitik faz dönüşümü (SIMT) esnasında, makroskobik deformasyon sadece, tamamıyla martenzitik ve tamamıyla östenitik bölgeler arasında oluşan mezoscale arayüzey bölgelerinde gerçekleşmektedir. Bu yüzden, lokalize deformasyonda bu geçiş bölgelerinin detaylı karakterizasyonu teknik açıdan kritik bir öneme sahiptir. Bu çalışma kapsamında, kristalografik tekstürün ve numune geometrisinin polikristalin NiTi süperelastik sac levhaların mekanik davranışı ve lokal deformasyon karakteristiği üzerine etkisi sistematik bir şekilde analiz edilmiştir. Dijital görüntü korelasyonu (DIC) tekniği ile lokal yüzey gerinim alanları deformasyon sırasında ölçülerek, arayüzey geçiş bölgeleri detaylıca karakterize edilmiştir. Malzemenin mekanik davranışının belirgin şekilde yöne bağlı olduğu ve numune genişliği/kalınlığı oranının düşmesiyle oryantasyon/tekstür etkisinin azaldığı saptanmıştır. Ayrıca, farklı numune geometrileri ve oryantasyonlarında, lokalize deformasyonda oluşan martenzit/östenit arayüzeyinin numune yüklenme eksenine göre farklı açılarda oluştuğu ve faz dönüşümü süresince sürekli değiştiği gözlenmiştir. Elde edilen sonuçlar, faz dönüşüm özellikleri, kristalografik tekstür, süperelastik anizotropi ve numune geometrisi arasındaki, NiTi malzemenin mühendislik uygulamaları açısından büyük öneme sahip etkileşime dair yeni anlayışlar kazandırmaktadır.

References

  • Referans1 Otsuka K., Wayman C.M., Shape memory materials, Cambridge University Press, Cambridge, 1998.
  • Referans2 Liu Y., Detwinning process and its anisotropy in shape memory alloys, Smart Materials, 4234, 82-93, 2001.
  • Referans3 Otsuka K., Ren X., Physical metallurgy of Ti-Ni-based shape memory alloys, Progress in Materials Science, 50, 511-678, 2005.
  • Referans4 Miyazaki S., Fu Y.Q., Huang W.M., Thin Film Shape Memory Alloys: Fundamentals and Device Applications, Cambridge University Press, Cambridge, 2009.
  • Referans5 Grassi E.N.D., Chagnon G., Oliveira H.M.R., Favier D., Anisotropy and Clausius-Clapeyron relation for forward and reverse stress-induced martensitic transformations in polycrystalline NiTi thin walled tubes, Mechanics of Materials, 2020.
  • Referans6 Reedlunn B., Churchill C.B., Nelson E.E., Daly S.H., Shaw J.A., Tension, compression and bending of superelastic shape memory alloy tubes, J. Mech. Phys. Solids, 63, 506-537, 2014.
  • Referans7 Bhardwaj A., Gupta A.K., Padisala S.K., Poluri K., Characterization of mechanical and microstructural properties of constrained groove pressed nitinol shape memory alloy for biomedical applications, Materials Science & Engineering C, 102, 730-742, 2019. Referans8 Li H.F., Nie F.L., Zheng Y.F., Cheng Y., Wei S.C., Valiev R.Z., Nanocrystalline Ti49.2Ni50.8 shape memory alloy as orthopaedic implant material with better performance, Journal of Materials Science & Technology, 35, 2156-2162, 2019.
  • Referans9 Kadir M.R.A., Dewi D.E.O., Jamaludin M.N., Nafea M., Ali M.S.M., A multi-segmented shape memory alloy-based actuator system forendoscopic applications, Sensors and Actuators A: Physical, 296, 92-100, 2019.
  • Referans10 Modabberifar M., Spenko M., A Shape Memory Alloy-Actuated Gecko-Inspired Robotic Gripper, Sensors and Actuators A: Physical, 2018.
  • Referans11 Jiang D., Kyriakides S., Landis C.M., Propagation of Phase Transformation Fronts in Pseudoelastic NiTi Tubes Under Uniaxial Tension, Extreme Mechanics Letters, 2017.
  • Referans12 Bian X., Saleh A.A., Pereloma E.V., Davies C.H.J., Gazder A.A., A digital image correlation study of a NiTi alloy subjected to monotonic uniaxial and cyclic loading-unloading in tension, Materials Science & Engineering A, 726, 102-112, 2018.
  • Referans13 Zheng L., He Y., Moumni Z., Lüders-like band front motion and fatigue life of pseudoelastic polycrystalline NiTi shape memory alloy, Scripta Materialia, 123, 46-50, 2016.
  • Referans14 Lu H.-H., Guo H.-K., Liang W., Li J.-C., Zhang G.-W., Li T.-T., High-temperature Laves precipitation and its effects on recrystallisation behaviour and Lüders deformation in super ferritic stainless steels, Materials and Design, 188, 108477, 2020.
  • Referans15 Gao S., Bai Y., Zheng R., Tian Y., Mao W., Shibata A., Tsuji N., Mechanism of huge Lüders-type deformation in ultrafine grained austenitic stainless steel, Scripta Materialia, 159, 28-32, 2019.
  • Referans16 Beardsmore D.W., Quinta da Fonseca J., Romero J., English C.A., Ortner S.R., Sharples J., Sherry A.H., Wilkes M.A., Study of Lüders phenomena in reactor pressure vessel steels, Materials Science & Engineering A, 588, 151-166, 2013.
  • Referans17 Hallai J.F., Kyriakides S., Underlying material response for Lüders-like instabilities, Int. J. of Plasticity, 47, 1-12, 2013.
  • Referans18 Wang L., Ma L., Liu C., Zhong Z.Y., Luo S.N., Texture-induced anisotropic phase transformation in a NiTi shape memory alloy, Materials Science & Engineering A, 2018.
  • Referans19 Weafer F.M., Guo Y., Bruzzi M.S., The effect of crystallographic texture on stress-induced martensitic transformation in NiTi: A computational analysis, J. of Mechanical Beavior of Biomedical Materials, 53, 210-217, 2016.
  • Referans20 Gall K., Sehitoglu H., The role of texture in tension-compression asymmetry in polycrystalline NiTi, Int. J. Plast. 15, 69-92, 1999.
  • Referans21 Kim K., Daly S., The effect of texture on stress-induced martensite formation in nickel–titanium, Smart Mater. Struct. 22, 075012, 2013.
  • Referans22 Liu Y., The superelastic anisotropy in a NiTi shape memory alloy thin sheet, Acta Materialia, 2015.
  • Referans23 ASTM Standard 2004-03: Standard test method for transformation temperature measurement of nickel-titanium shape memory alloy by thermal analysis, 2003.
  • Referans24 Zhou T., Yu C., Kang G., Kan Q., Fang D., A crystal plasticity based constitutive model accounting for R phase and two-step phase transition of polycrystalline NiTi shape memory alloys, International Journal of Solids and Structures, 2020.
  • Referans25 Feng B., Kong X., Hao S., Liu Y., Yang Y., Yang H., Guo F., Jiang D., Wang T., Ren Y., Cui L., In-situ synchrotron high energy X-ray diffraction study of micro-mechanical behaviour of R phase reorientation in nanocrystalline NiTi alloy, Acta Materialia, 2020.
  • Referans26 Mehdikhani M., Aravand M., Sabuncuoglu B., Callens M.G., Lomov S.V., Gorbatikh L., Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation, Composite Structures, 140, 192-201, 2016.
  • Referans27 Hung P.-C., Voloshin A.S., In-plane Strain Measurement by Digital Image Correlation, J. of the Braz. Soc. of Mech. Sci. & Eng., XXV (3), 215-221, 2003.
  • Referans28 GOM Gesellschaft für optische Messtechnik mbH (Braunschweig, Germany), Software “ARAMIS” v6.3.1 Optical Deformation Analysis, 2010.
  • Referans29 Gao S., Yi S., Experimental study on the anisotropic behavior of textured NiTi pseudoelastic shape memory alloys, Materials Science & Engineering A, 362, 107-111, 2003.
  • Referans30 Sridhar S.K., Stebner A.P., Rollett A.D., Statistical variations in predicted martensite variant volume fractions in superelastically deformed NiTi modeled using habit plane variants versus correspondence variants, International Journal of Solids and Structures, 2020.
  • Referans31 Chang S.H., Wu S.K., Textures in cold-rolled and annealed Ti50Ni50 shape memory alloy, Scripta Materialia, 50, 937-941, 2004.
  • Referans32 Inoue H., Miwa N., Inakazu N., Texture and Shape Memory Strain in TiNi Alloy Sheets, Acta Mater., 44 (12), 48254834, 1996.
  • Referans33 Miyazaki S., No V.H., Kitamura K., Khantachawana A., Hosoda H., Texture of Ti-Ni rolled thin plates and sputter-deposited thin films, International Journal of Plasticity, 16, 1135-1154, 2000.
  • Referans34 Mulder J.H., Thoma P.E., Beyer J., Anisotropy of Thermal Fatigue Properties of Cold-Rolled TiNi Sheet, Materials Characterization, 32, 161-168, 1994.
  • Referans35 Liu Y., Xie Z., Van Humbeeck J., Delaey L., Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys, Acta Mater., 46 (12), 4325-4338, 1998.
  • Referans36 Shaw J.A., Kyriakides S., Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, International J. of Plasticity, 13 (10), 837-871, 1998.
  • Referans37 Shaw J.A., Kyriakides S., On the nucleation and propagation of phase transformation fronts in a NiTi alloy, Acta Mater., 45 (2), 683-700, 1997.
  • Referans38 Mao S.C., Han X.D., Zhang Z., Wu M.H., The nano- and mesoscopic cooperative collective mechanisms of inhomogenous elastic-plastic transitions in polycrystalline TiNi shape memory alloys, Journal of Applied Physics, 101, 103522, 2007.
  • Referans39 Daly S., Ravichandran G., Bhattacharya K., Stress-induced martensitic phase transformation in thin sheets of Nitinol, Acta Mater., 55, 3593-3600, 2007.
  • Referans40 He Y.J., Sun Q.P., Macroscopic equilibrium domain structure and geometric compatibility in elastic phase transition of thin plates, International Journal of Mechanical Sciences, 52, 198-211, 2010.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Çağatay Elibol 0000-0002-3595-5259

Publication Date September 2, 2021
Submission Date June 18, 2020
Acceptance Date April 8, 2021
Published in Issue Year 2021 Volume: 36 Issue: 4

Cite

APA Elibol, Ç. (2021). Tekstüre NiTi levhalarda süperelastik anizotropi ve mezo ölçekli arayüzey bölgeleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(4), 2121-2134. https://doi.org/10.17341/gazimmfd.754732
AMA Elibol Ç. Tekstüre NiTi levhalarda süperelastik anizotropi ve mezo ölçekli arayüzey bölgeleri. GUMMFD. September 2021;36(4):2121-2134. doi:10.17341/gazimmfd.754732
Chicago Elibol, Çağatay. “Tekstüre NiTi Levhalarda süperelastik Anizotropi Ve Mezo ölçekli arayüzey bölgeleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36, no. 4 (September 2021): 2121-34. https://doi.org/10.17341/gazimmfd.754732.
EndNote Elibol Ç (September 1, 2021) Tekstüre NiTi levhalarda süperelastik anizotropi ve mezo ölçekli arayüzey bölgeleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36 4 2121–2134.
IEEE Ç. Elibol, “Tekstüre NiTi levhalarda süperelastik anizotropi ve mezo ölçekli arayüzey bölgeleri”, GUMMFD, vol. 36, no. 4, pp. 2121–2134, 2021, doi: 10.17341/gazimmfd.754732.
ISNAD Elibol, Çağatay. “Tekstüre NiTi Levhalarda süperelastik Anizotropi Ve Mezo ölçekli arayüzey bölgeleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 36/4 (September 2021), 2121-2134. https://doi.org/10.17341/gazimmfd.754732.
JAMA Elibol Ç. Tekstüre NiTi levhalarda süperelastik anizotropi ve mezo ölçekli arayüzey bölgeleri. GUMMFD. 2021;36:2121–2134.
MLA Elibol, Çağatay. “Tekstüre NiTi Levhalarda süperelastik Anizotropi Ve Mezo ölçekli arayüzey bölgeleri”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 36, no. 4, 2021, pp. 2121-34, doi:10.17341/gazimmfd.754732.
Vancouver Elibol Ç. Tekstüre NiTi levhalarda süperelastik anizotropi ve mezo ölçekli arayüzey bölgeleri. GUMMFD. 2021;36(4):2121-34.