Research Article
BibTex RIS Cite

Farklı gençleştiricilerle modifiye edilmiş bitümlü bağlayıcıların fiziksel, kimyasal ve reolojik özelliklerinin araştırılması

Year 2022, Volume: 37 Issue: 1, 497 - 510, 10.11.2021
https://doi.org/10.17341/gazimmfd.832495

Abstract

Son dönemde artan tüketim talebinden ötürü doğal malzemeler azalmakta olup karayolu sektöründe geri dönüştürülmüş asfalt (RAP) kullanımı ön plana çıkmaktadır. Bununla birlikte RAP uygulamalarında genellikle plentte bu malzeme ile birlikte yeni agrega, bitüm ve gençleştiriciler karıştırılmaktadır. Gençleştiriciler RAP içerisindeki yaşlanmış bitümü gençleştirerek özelliklerini iyileştirmek amacıyla kullanılmaktadır. Bunun yanında karışım esnasında gençleştiriciler karıştırma esnasında ilave edilen saf bitümle de temas ettiğinden yaşlanmamış saf bitümün özelliklerini de değiştirmektedir. Literatür çalışmaları incelendiğinde genellikle RAP tan elde edilen yaşlandırılmış bağlayıcıların reolojik özellikleri üzerindeki etkisi değerlendirilmiştir. Bu çalışmada farklı viskoziteli iki gençleştirici 5 farklı oranda yaşlandırılmamış bağlayıcıya uygulanmıştır. Saf ve gençleştirici uygulanmış bitümlü bağlayıcıların fiziksel ve mekanik özelliklerini değerlendirmek için penetrasyon, yumuşama noktası, elastik geri dönme, parlama noktası, kuvvet düktilite, viskozite ve dinamik kesme reometresi (DSR) testleri yapılmıştır. Katkı içeriğinin artması ile kompleks modül değerleri her iki katkı tipinde de azalmıştır. Faz açısı değerlerinin artışı bağlayıcıların daha viskoz bir yapıya sahip olduğunu göstermektedir. Bağlayıcıların kimyasal özellikleri ise Fourier dönüşümü kızılötesi spektroskopi testi (FTIR) ile belirlenmiştir. Gençleştiriciler ile yaşlandırılmamış asfalt arasında kimyasal bir reaksiyon olmadığı belirlenmiştir. Deney sonuçlarından iki gençleştiricinin saf bitümün reolojik ve fiziksel özellikleri üzerinde benzer bir etkiye sahip olduğu belirlenmiştir. Gençleştiriciler bitümün viskozitesini azaltarak, işlenebilirliğini iyileştirdiğini göstermiştir.

References

  • 1. Baghaee Moghaddam T., Baaj H., The use of rejuvenating agents in production of recycled hot mix asphalt: A systematic review, Constr Build Mater, 114, 805816, 2016. https://doi.org/10.1016/j.conbuildmat.2016.04.015
  • 2. Lin J., Guo P., Wan L., Wu S., Laboratory investigation of rejuvenator seal materials on performances of asphalt mixtures,Constr Build Mater., 37, 41–45, 2012. https://doi.org/10.1016/j.conbuildmat.2012.07.008
  • 3. Ji J., Yao H., Suo Z., You Z., Effectiveness of Vegetable Oils as Rejuvenators for Aged Asphalt Binders, J Mater Civ Eng., 29 (3), 2017. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001769
  • 4. Zaumanis M., Mallick R.B., Frank R., 100% recycled hot mix asphalt: A review and analysis, Resour Conserv Recycl, 92, 230–245, 2014. https://doi.org/10.1016/j.resconrec.2014.07.007
  • 5. Xuan D.X., Molenaar A.A.A., Houben L.J.M., Shrinkage cracking of cement treated demolition waste as a road base, Mater Struct., 49, 631–640, 2016.. https://doi.org/10.1617/s11527-015-0524-7
  • 6. Ongel A., Hugener M., Impact of rejuvenators on aging properties of bitumen. Constr Build Mater., 94, 467–474, 2015. https://doi.org/10.1016/j.conbuildmat.2015.07.030
  • 7. Asli H., Ahmadinia E., Zargar M., Karim M.R., Investigation on physical properties of waste cooking oil – Rejuvenated bitumen binder, Construction and Building Materials, 37, 398–405, 2012. https://doi.org/10.1016/j.conbuildmat.2012.07.042
  • 8. Shen J., Amirkhanian S., Aune Miller J., Effects of Rejuvenating Agents on Superpave Mixtures Containing Reclaimed Asphalt Pavement, J Mater Civ Eng., 19, 376–384, 2007. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(376)
  • 9. Zaumanis M., Mallick R.B., Frank R., Evaluation of different recycling agents for restoring aged asphalt binder and performance of 100 % recycled asphalt, Mater Struct., 48, 2475–2488, (2015). https://doi.org/10.1617/s11527-014-0332-5
  • 10. Chen M., Xiao F., Putman B., High temperature properties of rejuvenating recovered binder with rejuvenator, waste cooking and cotton seed oils. Constr Build Mater., 59, 10–16, (2014). https://doi.org/10.1016/j.conbuildmat.2014.02.032
  • 11. Zaumanis M., Mallick R.B., Frank R., Evaluation of Rejuvenator’s Effectiveness with Conventional Mix Testing for 100% Reclaimed Asphalt Pavement Mixtures, Transp Res Rec J Transp Res Board, 2370, 17–25 (2013). https://doi.org/10.3141/2370-03
  • 12. Ganter D., Mielke T., Maier M., Lupascu D.C., Bitumen rheology and the impact of rejuvenators. Constr Build Mater., 222, 414–423, 2019. https://doi.org/10.1016/j.conbuildmat.2019.06.177
  • 13. Zhang J., Sun C., Li P., Effect of different viscous rejuvenators on chemical and mechanical behavior of aged and recovered bitumen from RAP. Construction and Building Materials, 239, 117755, (2020). https://doi.org/10.1016/j.conbuildmat.2019.117755
  • 14. Mogawer W.S., Austerman A., Roque R., Ageing and rejuvenators: evaluating their impact on high RAP mixtures fatigue cracking characteristics using advanced mechanistic models and testing methods, Road Mater Pavement Des, 16, 1–28, (2015). https://doi.org/10.1080/14680629.2015.1076996
  • 15. Yan K., Peng Y., You L., Use of tung oil as a rejuvenating agent in aged asphalt: Laboratory evaluations. Constr Build Mater., 239, 117783, 2020. https://doi.org/10.1016/j.conbuildmat.2019.117783
  • 16. Kök B.V., Yilmaz M., Kuloğlu N., Alataş T., Investigation of the rheological properties of SBS modified binder produced by different methods, Sigma, 29, 272–288, (2011).
  • 17. Airey G., Hunter A., Rahimzadeh B., The influence of geometry and sample preparation on dynamic shear rheometer testing. In: Performance of Bituminous and Hydraulic Materials in Pavements, CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL, 33487-2742, 3–12, 2017.
  • 18. M332 A., D8239 Standard specification for Performance-Graded Asphalt Binder using Multiple Stress Creep Recovery (MSCR) Test, AASHTO, Washington, 2015.
  • 19. Wasage T.L.J., Stastna J.L.Z., Rheological analysis of multi-stress creep recovery (MSCR) testTitle, Int J Pavement Eng., 12, 561–568, 2011. https://doi.org/10.1080/10298436.2011.573557
  • 20. Behnood A., Shah A., McDaniel R.S., High-Temperature Properties of Asphalt Binders: Comparison of Multiple Stress Creep Recovery and Performance Grading Systems, Transp Res Rec., 2574, 131–143, 2016. https://doi.org/10.3141/2574-15
  • 21. BSI (British Standards Institution), Methods of test for petroleum and its products-BS 2000-520: Bitumen and bituminous binders-Determination of the tensile properties of modified bitumen by the force ductility method, London, 2003.
  • 22. Hou X., Lv S., Chen Z., Xiao F., Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement, 121, 304–316, 2018. https://doi.org/10.1016/j.measurement.2018.03.001
  • 23. Lamontagne J., Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens, Fuel, 80, 483–488, 2001. https://doi.org/10.1016/S0016-2361(00)00121-6
  • 24. Yao H., Dai Q., You Z., Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders, Construction and Building Materials, 101, 1078–1087, 2015. https://doi.org/10.1016/j.conbuildmat.2015.10.085
  • 25. Feng Z.G., Yu J.Y., Zhang H.L., Effect of ultraviolet aging on rheology, chemistry and morphology of ultraviolet absorber modified bitumen, Mater Struct., 46, 1123–1132, 2013. https://doi.org/10.1617/s11527-012-9958-3
  • 26. Feng Z., Bian H., Li X., Yu J., FTIR analysis of UV aging on bitumen and its fractions, Mater Struct, 49, 1381–1389, 2016. https://doi.org/10.1617/s11527-015-0583-9
Year 2022, Volume: 37 Issue: 1, 497 - 510, 10.11.2021
https://doi.org/10.17341/gazimmfd.832495

Abstract

References

  • 1. Baghaee Moghaddam T., Baaj H., The use of rejuvenating agents in production of recycled hot mix asphalt: A systematic review, Constr Build Mater, 114, 805816, 2016. https://doi.org/10.1016/j.conbuildmat.2016.04.015
  • 2. Lin J., Guo P., Wan L., Wu S., Laboratory investigation of rejuvenator seal materials on performances of asphalt mixtures,Constr Build Mater., 37, 41–45, 2012. https://doi.org/10.1016/j.conbuildmat.2012.07.008
  • 3. Ji J., Yao H., Suo Z., You Z., Effectiveness of Vegetable Oils as Rejuvenators for Aged Asphalt Binders, J Mater Civ Eng., 29 (3), 2017. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001769
  • 4. Zaumanis M., Mallick R.B., Frank R., 100% recycled hot mix asphalt: A review and analysis, Resour Conserv Recycl, 92, 230–245, 2014. https://doi.org/10.1016/j.resconrec.2014.07.007
  • 5. Xuan D.X., Molenaar A.A.A., Houben L.J.M., Shrinkage cracking of cement treated demolition waste as a road base, Mater Struct., 49, 631–640, 2016.. https://doi.org/10.1617/s11527-015-0524-7
  • 6. Ongel A., Hugener M., Impact of rejuvenators on aging properties of bitumen. Constr Build Mater., 94, 467–474, 2015. https://doi.org/10.1016/j.conbuildmat.2015.07.030
  • 7. Asli H., Ahmadinia E., Zargar M., Karim M.R., Investigation on physical properties of waste cooking oil – Rejuvenated bitumen binder, Construction and Building Materials, 37, 398–405, 2012. https://doi.org/10.1016/j.conbuildmat.2012.07.042
  • 8. Shen J., Amirkhanian S., Aune Miller J., Effects of Rejuvenating Agents on Superpave Mixtures Containing Reclaimed Asphalt Pavement, J Mater Civ Eng., 19, 376–384, 2007. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(376)
  • 9. Zaumanis M., Mallick R.B., Frank R., Evaluation of different recycling agents for restoring aged asphalt binder and performance of 100 % recycled asphalt, Mater Struct., 48, 2475–2488, (2015). https://doi.org/10.1617/s11527-014-0332-5
  • 10. Chen M., Xiao F., Putman B., High temperature properties of rejuvenating recovered binder with rejuvenator, waste cooking and cotton seed oils. Constr Build Mater., 59, 10–16, (2014). https://doi.org/10.1016/j.conbuildmat.2014.02.032
  • 11. Zaumanis M., Mallick R.B., Frank R., Evaluation of Rejuvenator’s Effectiveness with Conventional Mix Testing for 100% Reclaimed Asphalt Pavement Mixtures, Transp Res Rec J Transp Res Board, 2370, 17–25 (2013). https://doi.org/10.3141/2370-03
  • 12. Ganter D., Mielke T., Maier M., Lupascu D.C., Bitumen rheology and the impact of rejuvenators. Constr Build Mater., 222, 414–423, 2019. https://doi.org/10.1016/j.conbuildmat.2019.06.177
  • 13. Zhang J., Sun C., Li P., Effect of different viscous rejuvenators on chemical and mechanical behavior of aged and recovered bitumen from RAP. Construction and Building Materials, 239, 117755, (2020). https://doi.org/10.1016/j.conbuildmat.2019.117755
  • 14. Mogawer W.S., Austerman A., Roque R., Ageing and rejuvenators: evaluating their impact on high RAP mixtures fatigue cracking characteristics using advanced mechanistic models and testing methods, Road Mater Pavement Des, 16, 1–28, (2015). https://doi.org/10.1080/14680629.2015.1076996
  • 15. Yan K., Peng Y., You L., Use of tung oil as a rejuvenating agent in aged asphalt: Laboratory evaluations. Constr Build Mater., 239, 117783, 2020. https://doi.org/10.1016/j.conbuildmat.2019.117783
  • 16. Kök B.V., Yilmaz M., Kuloğlu N., Alataş T., Investigation of the rheological properties of SBS modified binder produced by different methods, Sigma, 29, 272–288, (2011).
  • 17. Airey G., Hunter A., Rahimzadeh B., The influence of geometry and sample preparation on dynamic shear rheometer testing. In: Performance of Bituminous and Hydraulic Materials in Pavements, CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL, 33487-2742, 3–12, 2017.
  • 18. M332 A., D8239 Standard specification for Performance-Graded Asphalt Binder using Multiple Stress Creep Recovery (MSCR) Test, AASHTO, Washington, 2015.
  • 19. Wasage T.L.J., Stastna J.L.Z., Rheological analysis of multi-stress creep recovery (MSCR) testTitle, Int J Pavement Eng., 12, 561–568, 2011. https://doi.org/10.1080/10298436.2011.573557
  • 20. Behnood A., Shah A., McDaniel R.S., High-Temperature Properties of Asphalt Binders: Comparison of Multiple Stress Creep Recovery and Performance Grading Systems, Transp Res Rec., 2574, 131–143, 2016. https://doi.org/10.3141/2574-15
  • 21. BSI (British Standards Institution), Methods of test for petroleum and its products-BS 2000-520: Bitumen and bituminous binders-Determination of the tensile properties of modified bitumen by the force ductility method, London, 2003.
  • 22. Hou X., Lv S., Chen Z., Xiao F., Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement, 121, 304–316, 2018. https://doi.org/10.1016/j.measurement.2018.03.001
  • 23. Lamontagne J., Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens, Fuel, 80, 483–488, 2001. https://doi.org/10.1016/S0016-2361(00)00121-6
  • 24. Yao H., Dai Q., You Z., Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders, Construction and Building Materials, 101, 1078–1087, 2015. https://doi.org/10.1016/j.conbuildmat.2015.10.085
  • 25. Feng Z.G., Yu J.Y., Zhang H.L., Effect of ultraviolet aging on rheology, chemistry and morphology of ultraviolet absorber modified bitumen, Mater Struct., 46, 1123–1132, 2013. https://doi.org/10.1617/s11527-012-9958-3
  • 26. Feng Z., Bian H., Li X., Yu J., FTIR analysis of UV aging on bitumen and its fractions, Mater Struct, 49, 1381–1389, 2016. https://doi.org/10.1617/s11527-015-0583-9
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Erkut Yalçın 0000-0002-6389-4211

Publication Date November 10, 2021
Submission Date November 27, 2020
Acceptance Date June 28, 2021
Published in Issue Year 2022 Volume: 37 Issue: 1

Cite

APA Yalçın, E. (2021). Farklı gençleştiricilerle modifiye edilmiş bitümlü bağlayıcıların fiziksel, kimyasal ve reolojik özelliklerinin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 37(1), 497-510. https://doi.org/10.17341/gazimmfd.832495
AMA Yalçın E. Farklı gençleştiricilerle modifiye edilmiş bitümlü bağlayıcıların fiziksel, kimyasal ve reolojik özelliklerinin araştırılması. GUMMFD. November 2021;37(1):497-510. doi:10.17341/gazimmfd.832495
Chicago Yalçın, Erkut. “Farklı gençleştiricilerle Modifiye Edilmiş bitümlü bağlayıcıların Fiziksel, Kimyasal Ve Reolojik özelliklerinin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37, no. 1 (November 2021): 497-510. https://doi.org/10.17341/gazimmfd.832495.
EndNote Yalçın E (November 1, 2021) Farklı gençleştiricilerle modifiye edilmiş bitümlü bağlayıcıların fiziksel, kimyasal ve reolojik özelliklerinin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37 1 497–510.
IEEE E. Yalçın, “Farklı gençleştiricilerle modifiye edilmiş bitümlü bağlayıcıların fiziksel, kimyasal ve reolojik özelliklerinin araştırılması”, GUMMFD, vol. 37, no. 1, pp. 497–510, 2021, doi: 10.17341/gazimmfd.832495.
ISNAD Yalçın, Erkut. “Farklı gençleştiricilerle Modifiye Edilmiş bitümlü bağlayıcıların Fiziksel, Kimyasal Ve Reolojik özelliklerinin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 37/1 (November 2021), 497-510. https://doi.org/10.17341/gazimmfd.832495.
JAMA Yalçın E. Farklı gençleştiricilerle modifiye edilmiş bitümlü bağlayıcıların fiziksel, kimyasal ve reolojik özelliklerinin araştırılması. GUMMFD. 2021;37:497–510.
MLA Yalçın, Erkut. “Farklı gençleştiricilerle Modifiye Edilmiş bitümlü bağlayıcıların Fiziksel, Kimyasal Ve Reolojik özelliklerinin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 37, no. 1, 2021, pp. 497-10, doi:10.17341/gazimmfd.832495.
Vancouver Yalçın E. Farklı gençleştiricilerle modifiye edilmiş bitümlü bağlayıcıların fiziksel, kimyasal ve reolojik özelliklerinin araştırılması. GUMMFD. 2021;37(1):497-510.