BibTex RIS Kaynak Göster

KAOTİK ZAMAN SERİSİNİN ANALİZİ ÜZERİNE BİR ARAŞTIRMA

Yıl 2006, Cilt: 21 Sayı: 4, 0 - , 02.04.2013

Öz

Bu güne kadar yapılan çalışmalarda, dinamik sistemler doğrusal ve/veya doğrusal olmayan metotlar kullanılarak incelenmişlerdir. Kararlı doğrusal sistemler için kullanılan doğrusal metotlar, doğrusal olmayan analizlerde genellikle başarısız olmakla beraber, yol gösterici olarak kullanılabilmektedir. Dinamik bir sistemi tanımlayan fark denklemlerindeki doğrusal olmayan bir değişkenden dolayı, önceden bilinemeyen dinamikler meydana gelebilir. Kaos teorisi veya doğrusal olmayan analiz metotları bu tür dinamik sistemleri incelemek için kullanılmaktadır. Düzensiz bir durumu ifade eden kaos, “başlangıç koşullarına hassas duyarlılık” olarak tarif edilebilir. Eğer dinamik sistemin fark denklemleri biliniyor ise başlangıç şartlarındaki değişimlerin sistemin dinamiğine etkisi kolaylıkla tespit edilebilir. Deneysel zaman serisi için başlangıç şartının bilinememesi, bu ölçümlerin alındığı sistemlerin analizlerini zorlaştırmaktadır. Bu çalışmada, zaman içinde değişen herhangi bir büyüklüğün belirli aralıklarla ya da sürekli olarak ölçülmesi ile elde edilen zaman serisinin kaotik analizi için kullanılan metotlar açıklanmıştır. Açıklanan metotların çeşitli dinamik sistemlere ait zaman serileri üzerinde uygulamaları yapılmıştır. Özellikle fizyolojik sistemlerden elde edilen zaman serileri üzerinde bu zamana kadar yapılan bazı çalışmalar özetlenmiştir.

Kaynakça

  • Strogatz, S.H., Nonlinear Dynamics and Chaos with Application to Physics, Biology, Chemistry and Engineering, Perseus Books Publishing, Massachusetts, A.B.D., 1994.
  • Adem S., “Kelebek Etkisi”, Sızıntı, No 219, 114-118, 1997.
  • Keunen, R.W.M., Vliegen, J.H.R., Stam, C.J. ve Tavy D.L.J., “Nonlinear Transcranial Doppler Analysis Demonstrates Age-Related Changes of Cerebral Hemodynamics”, Ultrasound Med. & Biol., Cilt 22, No 4, 383-390, 1996.
  • Williams, G.P., Chaos Theory Tamed, Taylor & Francis Publisher, London, 1997.
  • Baker, G.L., Chaotic Dynamics an Introduction, Cambridge University Pres., Cambridge, 1990.
  • Yamamoto, Y., “Detection of Chaos and Fractals from Experimental Time Series”, Modern Tech-niques in Neuroscience Research, Editör: Wind-horst, U, ve H. Johansson, Springer-Verlag, Berlin Heidelberg New York Tokyo, 669-687, 1999.
  • Abarbanel, H.D.I., Brown R., Sidorowich J.J. ve Tsimring L.S., “The Analysis of Observed Chaotic Data in Physical Systems”, Reviews of Modern Physics, Cilt 65, No 4, 1331-1392, 1993.
  • Lorenz E.N., “Dimension of weather and climate attractors”, Nature, Cilt 353, 241-244, 1991.
  • Broomhead, D.S., Huke, J.P. ve Muldoon, M.R., “Linear Filters and Nonlinear Systems”, J. Roy. Stat. Soc., Cilt B54, 373-382, 1992.
  • Parlitz, U., “Nonlinear Time Series Analysis”, Nonlinear Modelling-Advanced Black-Box Tech¬niques, Editör: Suykens, J.A.K. ve Vandewalle, J., Kluwer Academic Publishers, Boston, 209-239, 1998.
  • Young, R.K., Wavelet Theory and Its Applica-tions, Kluwer Academic Publishers, Boston, A.B.D., 1993.
  • Donoho, D.L., “De-noising by soft-thresholding”, IEEE Trans. Inform. Theory, Cilt 41, No 3, 613-627, 1995.
  • Bröcker, J., Parlitz, U. ve Ogorzalek, M., “Nonlinear Noise Reduction”, Proceeding of the IEEE, Cilt 90, No 5, 898-918, 2002.
  • Hu, J., Gao, J.B. ve White, K.D., “Estimating Measurement Noise in A Time Series by Exploit-ing Nonstationarity”, Chaos, Solitions and Fractals, Cilt 22, No 4, 807-819, 2004.
  • Kostelich, E.J. ve Schreiber T., “Noise Reduction in Chaotic Time-Series Data: A Survey of Common Methods”, Phys. Rev. E, Cilt 48, No 2, 1752-1763, 1993.
  • Packard, N.H., Crutchfield, J.P., Farmer, J.D. ve Shaw, R.S., “Geometry from Time Series”, Phys. Rev. Lett., Cilt 45, 712-716, 1980.
  • Takens, F., “Detecting Strange Attractors in Tur-bulence”, Lecture Notes in Mathematics, Cilt 898, 366-381, 1981.
  • Sauer, T., Yorke, Y. ve Casdagli, M., “Embedol-ogy”, J. Stat. Phys., Cilt 65, 579-616, 1991.
  • Akay, M., Nonlinear Biomedical Signal Proc-essing, Dynamic Analysis and Modelling, Vol-ume II, IEEE Pres, 2000.
  • Sprott, J.C., Chaos and Time-Series Analysis, Oxford University Pres, 2003.
  • Brown, R., Bryant, P. ve Abarbanel, H.D.I., “Computing the Lyapunov Spectrum of A Dy-namical System from an Observed Time Series”, Phys. Rev. A, Cilt 43, No 6, 2787-2806, 1991.
  • Fraser, A.M. ve Swinney, H.L., “Independent Coordinates for Strange Attractors from Mutual Information”, Phys. Rev. A , Cilt 33, 1134, 1986.
  • Broomhead, D.S. ve King, G.P., “Extracting Qualitative Dynamics from Experimental Data”, Physica D, Cilt 20, No 2, 217-236, 1986.
  • Cao, L., “Practical Method for Determinig the Minimum Embedding Dimension of a Scalar Time Series”, Physica D, Cilt 110, No 1, 43-50, 1997.
  • Kaplan, D.T. ve Glass, L., “Direct Test for De¬ter-minism in a Time Series”, Phys. Rev. Lett., Cilt 68, 427-430, 1992.
  • Kennel, M.B., Brown R. ve Abarbanel H.D.I., “Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction”, Phys. Rev. A, Cilt 45, 3403-3411, 1992.
  • Yavaş, Ö., Örgü Titreşimleri ve Örgülerde Kaos Analizi, Doktora Tezi, Ankara Üniv., Fen Bilimleri Enstitüsü, 1992.
  • Faure, P. ve Korn, H., “Is There Chaos in the Brain I. Concepts of Nonlinear Dynamics and Methods of Investigation”, Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie, Cilt 324, No 9, 773-793, 2001.
  • Eckmann,J.P. ve Ruelle, D., “Ergodic Theory of Chaos and Strange Attractors”, Reviews of Modern Physics, Cilt 57, No 3, 617-656, 1985.
  • Lillekjendlie, B., Kugiumtzis, D. ve Chiristophersen, N., “Chaotic Time Series - Part II: System Iden¬ti¬fication and Prediction”, Modeling, Iden¬ti¬fi¬ca¬tion and Control, Cilt 15, No 4, 225-243, 1994.
  • Wolf, A., Swift, J.B., Swinney, H.L. ve Vastano, J.A., “Determining Lyapunov Exponents from a Time Series”, Physica D, Cilt 16, No 3, 285-317, 1985.
  • Geist, K., Parlitz, U. ve Lauterborn, W., “Comparison of Different Methods for Computing Lyapunov Exponents”, Prog. Theor. Phys., Cilt 83, No 5, 875-893, 1990.
  • Eckmann, J.P., Kamphorst, S.O., Ruelle, D. ve Ciliberto, S., “Lyapunov Exponents from Time Series”, Phys. Rev. A, Cilt 34, 4971-4979, 1986.
  • Kruel, T.M., Eiswirthy, M. ve Schneider F.W., “Computation of Lyapunov Spectra: Effect of Interactive Noise and Application to A Chemical Oscillator”, Physica D, Cilt 63, 117-137, 1993.
  • Gencay, R. ve Dechert, W.D., “An Algorithm for the n Lyapunov Exponents from Noisy Chaotic Time Series”, Physica D, Cilt 59,142-157, 1992.
  • Abarbanel, H.D.I., Brown, R. ve Kennel M.B., “Lyapunov Exponents in Chaotic Systems: Their Importance and Their Evaluation Using Observed Data”, Int. J. Mod. Phys. B, Cilt B5, Sayı 9, 1347-1375, 1991.
  • Briggs K., “An Improved Method for Estimating Liapunov Exponents of Chaotic Time Series”, Physics Letters A, Cilt 151, 27-32, 1990.
  • Oiwa, N.N. ve Fiedler-Ferrara N., “A Fast Algorithm for Estimating Lyapunov Exponents from Time Series”, Physics Letters A, Cilt 246, 117-121, 1998.
  • Sano, M. ve Sawada, Y., “Measurement of the Lyapunov Spectrum from A Chaotic Time Series”, Phys. Rev. Lett., Cilt 55, 1082-1085, 1985.
  • Wagner, C.D. ve Persson, P.B., “Chaos in the Cardiovascular System: An Update”, Cardio-vascular Research, Cilt 40, No 2, 257-264, 1998.
  • Rosenstein, M.T., Collins, J.J. ve De Luca C. J., “A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets”, Physica D, Cilt 65, 117, 1993.
  • Brown, R., “Calculating Lyapunov Exponents for Short and/or Noisy Data Set”, Phys Rev E, Cilt 47, 3962-3969, 1993.
  • Kantz, H., “A Robust Method to Estimate the Maximal Lyapunov Exponent of a time Series”, Phys. Lett. A, Cilt 185, 77-87, 1994.
  • Sato, S., Sano, M. ve Sawada, Y., “Practical Methods of Measuring the Generalized Dimension and Largest Lyapunov Exponent in High Dimen¬sional Chaotic Systems”, Prog. Theor. Phys., Cilt 77, No 1, 1-5, 1987.
  • Grond, F., Diebner, H.H., Sahle, S., Mathias, A., Fischer, S. ve Rössler, O.E., “A Robust, Locally Interpretable Algorithm for Lyapunov Exponents”, Chaos, Solitons and Fractals, Cilt 16, No 5, 841-852, 2003.
  • Grond, F. ve Diebner, H.H., “Local Lyapunov Exponents for Dissipative Continuous Systems”, Chaos, Solitons and Fractals, Cilt 23, No 5, 1809-1817, 2005.
  • Stefanski, A., Dabrowski, A. ve Kapitaniak, T., “Evaluation of the Largest Lyapunov Exponent in Dynamical Systems with Time Delay”, Chaos, Solitons and Fractals, Cilt 23, No 5, 1651-1659, 2005.
  • Lu, J., Yang, G., Oh, H. ve Luo, A.C.J., “Com-puting Lyapunov Exponents of Continuous Dynamical Systems: Method of Lyapunov Vectors”, Chaos, Solitons and Fractals, Cilt 23, No 5, 1879-1892, 2005.
  • Yonemoto, K., Yanagawa, T., “Estimating the Lyapunov Exponent from Chaotic Time Series with Dynamic Noise”, MHF Preprint Series, MHF 2004-1, Kyushu University, 2004.
  • Liu, H.F., Dai, Z.H., Li, W.F., Gong, X. ve Yu, Z.H., “Noise Robust Estimates of the Largest Lyapunov Exponent”, Phys. Lett. A, Cilt 341, 119-127, 2005.
  • Bünner, M.J. ve Hegger R., “Estimation of Lyapunov Spectra from Space-Time Data”, Phys. Lett. A, Cilt 258, 25-30, 1999.
  • Eckmann, J.P. ve Ruelle, D., “Fundamental Limi¬¬tations for Estimating Dimension and Lyapunov Exponents in Dynamical Systems”, Physica D, Cilt 56, 185-187, 1992.
  • Casaleggio, A. ve Braiotta, S., “Estimation of Lyapunov Exponents of ECG Time Series- The Influence of Parameters”, Chaos, Solitons and Fractals, Cilt 8, No 10, 1591-1599, 1997.
  • Bracic, M. ve Stefanovska, A., “Nonlinear Dynamics of the Blood Flow Studied by Lyapunov Expo-nents”, Bulletin of Mathematical Biology, Cilt 60, 417-433, 1998.
  • Argyris, J., Andreadis, I., Pavlos, G. ve Athanasiou, M., “On the Influence of Noise on the Largest Lyapunov Exponent and on the Geomet¬ric Structure of Attractors”, Chaos, Solitons and Fractals, Cilt 9, No 6, 947-958, 1998.
  • Zhang, J., Lam, K.C., Yan, W.J., Gao, H. ve Li, Y., “Time Series Prediction Using Lyapunov Exponents in Embedding Phase Space”, Com-puters and Electrical Engineering, Cilt 30, 1-15, 2004.
  • Awrejcewicz, J., Dzyubak, L. ve Grebogi, C., “A Direct Numerical Method for Quantifying Regular and Chaotic Orbits”, Chaos, Solitons and Fractals, Cilt 19, No 3, 503-507, 2004.
  • Mandelbrot, B.B., Fractals: Form, chance, and dimension, W.H. Freeman, San Francisco, 1997.
  • Hentschel, H.G.E. ve Procaccia, I., “The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors”, Physica D, Cilt 8, 435-444, 1983.
  • Camastra, F. ve Vinciarelli, A., “Estimating the Intrinsic Dimension of Data with a Fractal-Based Method”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Cilt 24, No 10, 2002.
  • Kaplan, J. ve Yorke, J., “Fuctional Differential Equations and the Approximation of Fixed Points”, Lecture Notes in Mathematics, No 730, Berlin: SpringerVerlag, 1979.
  • Grassberger, P. ve Procaccia, I., “Measuring the Strangenes of Strange Attractors” Physica D, Cilt 9, 189-208, 1983.
  • Theiler, J., “Estimating Fractal Dimension”, J. Opt. Soc. Am. A, Cilt 7, 1055-1073, 1990.
  • Ding, M., Grebogi, C., Ott, E., Sauer, T. ve Yorke, J.A., “Estimating Correlation Dimension from Chaotic Time Series: When Does Plateau Onset Occur”, Physica D, Cilt 69, 404-424, 1993.
  • Corana, A., Bortolan, G. ve Casaleggio, A. “Most Probable Dimension Value and Most Interval Methods for Automatic Estimation of Dimension from Time Series”, Chaos, Solitons and Fractals, Cilt 20, No 4, 779-790, 2004.
  • Radhakrishnan, P., Lian T.L. ve Sagar B.S.D., “Estimation of Fractal Dimension Through Morphological Decomposition”, Chaos, Solitons and Fractals, Cilt 21, No 3, 563-572, 2004.
  • Casaleggio, A. ve Corana, A., “A Posteriori Tests to Validate Dimension Estimates from Time Series”, Chaos, Solitons and Fractals, Cilt 11, No 13, 2017-2030, 2000.
  • Isliker, H.A., “A Scaling Test for Correlation Di-mensions”, Phys. Lett. A, Cilt 169, 313-322, 1992.
  • Grassberger, P. ve Procaccia, I., “Estimation of the Kolmogorov Entropy From a Chaotic Signal” Phys. Rev. A, Cilt 28, 2591-2593, 1983.
  • Abarbanel, H.D.I., Brown, R. ve Kadtke, J.B., “Prediction in Chaotic Nonlinear Systems: Methods for Time Series with Broadband Fourier Spectra”, Phys. Rev. A, Cilt 41, No 4, 1782-1807, 1990.
  • Farmer, J.D. ve Sidorowich, J.J., “Predicting Chaotic Time Series”, Phys. Rev. Lett. Cilt 59, No 8, 845-848, 1987.
  • Casdagli, M., “Nonlinear Prediction of Chaotic Time Series”, Physica D, Cilt 35, 335-356, 1989.
  • Brown, R., Rulkov, N.F. ve Tracy, E.R., “Modelling and Synchronizing Chaotic Systems from Time-Series Data”, Phys. Rev. E, Cilt 49, No 5, 3784-3800, 1994.
  • Linsay, P.S., “An Efficient Method of Forecast-ing Chaotic Time Series Using Linear Interpola-tion”, Phys. Lett. A, Cilt 153, 353-356, 1991.
  • Rowlands G. ve Sprott J.C., “Extraction of Dynamical Equations from Chaotic Data”, Physica D, Cilt 58, 251-259, 1992.
  • Baker, G.L., Gollub, J.P. ve Blackburn, J.A., “Inverting Chaos: Extracting System Parameters from Experimental Data”, Chaos, Cilt 6, No 4, 528-533, 1996.
  • Narayanan, K., Govindan, R.B. ve Gopinathan, M.S., “Unstable Periodic Orbits in Human Cardiac Rhythms”, Phys. Rev. E, Cilt 57, No 4, 4594-4603, 1998.
  • Pierson, D. ve Moss, F., “Detecting Periodic Unstable Points in Noisy Chaotic and Limit Cycle Attractors with Applications to Biology”, Phys. Rev. Lett., Cilt 75, 2124-2127, 1995.
  • Lathrop, D.P. ve Kostelich, E.J., “Characterization of an Experimental Strange Attractor by Periodic Orbits”, Phys. Rev. A, Cilt 40, 4028-4031, 1989.
  • So, P., Ott, E., Sauer, T., Gluckman, B.J., Grebogi, C. ve Schiff, S.J., “Extracting Unstable Periodic Orbits from Chaotic Time Series Data”, Phys. Rev. E, Cilt 55, 5398-5417, 1997.
  • Ott, E., Grebogi, C. ve Yorke, J.A., “Controlling Chaos”, Phys. Rev. Lett., Cilt 64, 1196-1199, 1990.
  • Pawelzik, K. ve Schuster, H.G., “Unstable Periodic Orbits and Prediction”, Phys. Rev. A, Cilt 43, 1808-1812, 1991.
  • Mirus, K.A. ve Sprott J.C., “Controlling Chaos in Low- and High-Dimensional Systems with Periodic Parametric Perturbations”, Phys. Rev. E, Cilt 59, No 5, 5313-5424, 1999.
  • Thelier, J., Eubank, S., Longtin, A., Galdrikian, B. ve Farmer J.D., “Testing for Nonlinearity in Time Series: The Method of Surrogate Data”, Physica D, Cilt 58, 77-94, 1992.
  • Takens, F., “Detecting Nonlinearities in Station-ary Time Series”, Int. J. Bifurcation and Chaos, Cilt 3, No 2, 241-256, 1993.
  • Kaplan, D.T., “Exceptional Events as Evidence for Determinism”, Physica D, Cilt 73, 38-48, 1994.
  • Schreiber, T. ve Schmitz, A., “Improved Surro-gate Data for Nonlinearity Tests”, Phys. Rev. Lett., Cilt 77, No 4, 635-638, 1996.
  • Yu, D., Lu, W. ve Harrison, R.G., “Detecting Dy-namical Nonstationarity in Time Series Data”, Chaos, Cilt 9, No 4, 1999.
  • West, B.J., Zhang, R., Sanders, A.W., Miniyar, S., Zuckerman, J.H. ve Levine, B.D., “Fractal Fluctuations in Cardiac Time Series”, Physica A, Cilt 270, 552-566, 1999.
  • Hagerman, I., Berglund, M., Lorin, M., Nowak, J. ve Sylvén C., “Chaos-Related Deterministic Regulation of Heart Rate Variability in Time and Frequency Domains: Effects of Autonomic Blockade and Exercise”, Cardiovascular Research, Cilt 31, No 3, 410-418, 1996.
  • Poon, C-S. ve Merrill, C.K., “Decrease of Cardiac Chaos in Congestive Heart Failure”, Nature, Cilt 389; 492-495, 1997.
  • Cohen, M.E., Hudson, D.L., Anderson, M.F. ve Vazquez C., “Blood Flow Data Exhibit Chaotic Properties”, Int. J. Microcomputer Applications, Cilt 12, No 3, 82-87, 1994.
  • Yip, K.P., Holstein-Rathlou, N.H. ve Marsh, D.J., “Chaos in Blood Flow Control in Genetic and Renovascular Hypertensive Rats”, Am. J. Physiol. Soc., Cilt 261, F400-F408, 1991.
  • Carolan-Ress, G., Tweddel, A.C., Naka, K.K. ve Griffith, T.M., “Fractal Dimension of Laser Doppler Flowmetry Time Series”, Medical Engineering and Physics, Cilt 24, 71-76, 2002.
  • Stefanovska, A. ve Bracic, M., “Reconstructing Cardiovascular Dynamics”, Control Engineering Practice, Cilt 7, 161-172, 1999.
  • Wang, Z., Li, Z., Wei, Y.,Ning X. ve Lin, Y., “Lyapunov Exponents for Synchronous 12-lead ECG Signals ”, Chinese Science Bulletin, Cilt 47, No 21, 2002.
  • Small, M. ve Judd K., “Detecting Nonlinearity in Experimental Data” Int. Journal of Bifurcation and Chaos, Cilt 8, No 6, 1231-1244, 1998.
  • Ahlstrom, C., Johansson, A., Hult, P. ve Ask, P., “Chaotic Dynamics of Respiratory Sounds”, Chaos, Solitions and Fractals, Baskıda, 2005.
  • Small, M., Yu, D., Simonotto, J., Harrison, R.G., Grubb, N. ve Fox, K.A.A., “Uncovering Non-linear Structure in Human ECG Recordings”, Chaos, Solitions and Fractals, Cilt 13, No 8, 1755-1762, 2002.
  • Yu, D., Small M., Harrison, R.G., Robertson, C., Clegg, G., Holzer, M. ve Sterz, F., “Measuring Temporal Complexity of Ventricular Fibrillation”, Physics Letters A, Cilt 265, 68-75, 2000.
  • Yeragani, V.K., Radhakrishna, R.K.A., Ramakrishnan, K.R. ve Srinivasan, S.H., “Measures of LLE of Heart Rate in Different Frequency Bands: A Possible Measure of Relative Vagal and Sympathetic Activity”, Nolinear Analysis: Real World Applications, Cilt 5, 441-462, 2004.
  • Acharya, R. U., Kumar, A., Bhat, P.S., Lim, C.M., Iyengar, S.S., Kannathal, N. ve Krishnan, S.M., “Classification of Cardiac Abnormalities Using Heart Rate Signals”, Medical and Biological Engineering and Computing, Cilt 42, 288-293, 2004.
  • Keshavan, M.S., Cashmere, J.D., Miewald, J. ve Yeragani, V.K., “Decreased Nonlinear Complexity and Chaos during Sleep in First Episode Schizo¬phrenia: A Preliminary Report”, Schizophrenia Research, Cilt 71, 263-272, 2004.
  • Ferri, R., Salvatore, P., Nobili, L., Billiard M. ve Ferrillo F., ”Correlation Dimension of EEG Slow-Wave Activity During Sleep in Narcoleptic Patients Under Bed Rest Conditions”, Int. J. Psychophysiology, Cilt 34, 37-43, 1999.
  • Fell, J., Mann, K., Röschke, J. ve Gopinathan, M.S., “Nonlinear Analysis of Continuous ECG During Sleep I. Reconstruction”, Biological Cybernetics, Cilt 82, No 6, 477-483, 2000.
  • Fell, J., Mann, K., Röschke, J. ve Gopinathan, M.S., “Nonlinear Analysis of Continuous ECG During Sleep II. Dynamical Measures”, Biological Cybernetics, Cilt 82, No 6, 485-491, 2000.
  • Wessel, N., Schumann, A., Schirdewan, A., Voss, A. ve Kurths, J., “Entropy Measures in Heart Rate Variability Data”, Lecture Notes in Computer Science, Cilt 1933, 78-87, 2000.
  • Yoshikawa, Y. ve Yasuda, Y., “Non-Linear Dynamics in Heart Rate Variability in Different Generations”, Bulletin of Toyohashi College, Cilt 7, 63-78, 2003.
  • Carvajal, R., Wessel, N., Vallverdu, M., Caminal, P. ve Voss, A., “Correlation Dimension Analysis of Heart Rate Variability in Patients with Dilated Cardiomyopathy”, Computer Methods and Programs in Biomedicine, Cilt 78, 133-140, 2005.
  • Tsuda, I., Thara, T. ve Iwanaga, H., “Chaotic Pulsation in Human Capillary Vessels and Its Dependence on Mental and Physical Conditions”, Int.J. Bifurc. Chaos, Cilt 2, 313-324, 1992.
  • May, P., Gerbault, O., Arrouvel, C., Revol, M., Servant, J.M. ve Vicaut, E., “Nonlinear Analysis of Arterial Oscillated Flow in Experimental Stenosis and Microsurgical Anastomosis”, J. Surgical Research, Cilt 99, 53-60, 2001.
  • May, P., Arrouvel, C., Revol, M., Servant, J.M. ve Vicaut, E., “Detection of Hemodynamic Tur-bulance in Experimental Stenosis: An in Vivo Study in the Rat Carotid Artery”, J. Vascular Research, Cilt 39, 21-29, 2002.
  • Pascolo, P.B., Marini, A., Carniel R. ve Barazza, F., “Posture as a Chaotic System and an Appli-cation to the Parkinson’s Disease”, Chaos, Solitons and Fractals, Cilt 24, No 5, 1343-1346, 2005.
  • Radhakrishna, K.A.Rao ve Yeragani, V.K., “Decreased Chaos and Increased Nonlinearity of Heart Rate Time Series in Patients with Panic Disorder”, Autonomic Neuroscience: Basic and Clinical, Cilt 88, 99-108, 2001.
  • Orel, V.E., Romanov, A.V., Dzyatkovskaya, N.N. ve Mel’nik, Y.I., “The Device and Algorithm for Estimation of the Mechanoemisson Chaos in Blood of Patients with Gastric Cancer”, Medical Engineering and Physics, Cilt 24, 365-371, 2002.
  • Güler, İ. ve Übeyli, E.D., “Detecting Variability of Internal Carotid Arterial Doppler Signals by Lyapunov Exponents”, Medical Engineering and Physics, Cilt 26, No 9, 763-771, 2004.
  • Güler, N.F., Übeyli, E.D. ve Güler, İ., “Recurrent Neural Networks Employing Lyapunov Exponents for EEG Signals Classification”, Expert System with Applications, Cilt 29, 506-514, 2005.
Yıl 2006, Cilt: 21 Sayı: 4, 0 - , 02.04.2013

Öz

Kaynakça

  • Strogatz, S.H., Nonlinear Dynamics and Chaos with Application to Physics, Biology, Chemistry and Engineering, Perseus Books Publishing, Massachusetts, A.B.D., 1994.
  • Adem S., “Kelebek Etkisi”, Sızıntı, No 219, 114-118, 1997.
  • Keunen, R.W.M., Vliegen, J.H.R., Stam, C.J. ve Tavy D.L.J., “Nonlinear Transcranial Doppler Analysis Demonstrates Age-Related Changes of Cerebral Hemodynamics”, Ultrasound Med. & Biol., Cilt 22, No 4, 383-390, 1996.
  • Williams, G.P., Chaos Theory Tamed, Taylor & Francis Publisher, London, 1997.
  • Baker, G.L., Chaotic Dynamics an Introduction, Cambridge University Pres., Cambridge, 1990.
  • Yamamoto, Y., “Detection of Chaos and Fractals from Experimental Time Series”, Modern Tech-niques in Neuroscience Research, Editör: Wind-horst, U, ve H. Johansson, Springer-Verlag, Berlin Heidelberg New York Tokyo, 669-687, 1999.
  • Abarbanel, H.D.I., Brown R., Sidorowich J.J. ve Tsimring L.S., “The Analysis of Observed Chaotic Data in Physical Systems”, Reviews of Modern Physics, Cilt 65, No 4, 1331-1392, 1993.
  • Lorenz E.N., “Dimension of weather and climate attractors”, Nature, Cilt 353, 241-244, 1991.
  • Broomhead, D.S., Huke, J.P. ve Muldoon, M.R., “Linear Filters and Nonlinear Systems”, J. Roy. Stat. Soc., Cilt B54, 373-382, 1992.
  • Parlitz, U., “Nonlinear Time Series Analysis”, Nonlinear Modelling-Advanced Black-Box Tech¬niques, Editör: Suykens, J.A.K. ve Vandewalle, J., Kluwer Academic Publishers, Boston, 209-239, 1998.
  • Young, R.K., Wavelet Theory and Its Applica-tions, Kluwer Academic Publishers, Boston, A.B.D., 1993.
  • Donoho, D.L., “De-noising by soft-thresholding”, IEEE Trans. Inform. Theory, Cilt 41, No 3, 613-627, 1995.
  • Bröcker, J., Parlitz, U. ve Ogorzalek, M., “Nonlinear Noise Reduction”, Proceeding of the IEEE, Cilt 90, No 5, 898-918, 2002.
  • Hu, J., Gao, J.B. ve White, K.D., “Estimating Measurement Noise in A Time Series by Exploit-ing Nonstationarity”, Chaos, Solitions and Fractals, Cilt 22, No 4, 807-819, 2004.
  • Kostelich, E.J. ve Schreiber T., “Noise Reduction in Chaotic Time-Series Data: A Survey of Common Methods”, Phys. Rev. E, Cilt 48, No 2, 1752-1763, 1993.
  • Packard, N.H., Crutchfield, J.P., Farmer, J.D. ve Shaw, R.S., “Geometry from Time Series”, Phys. Rev. Lett., Cilt 45, 712-716, 1980.
  • Takens, F., “Detecting Strange Attractors in Tur-bulence”, Lecture Notes in Mathematics, Cilt 898, 366-381, 1981.
  • Sauer, T., Yorke, Y. ve Casdagli, M., “Embedol-ogy”, J. Stat. Phys., Cilt 65, 579-616, 1991.
  • Akay, M., Nonlinear Biomedical Signal Proc-essing, Dynamic Analysis and Modelling, Vol-ume II, IEEE Pres, 2000.
  • Sprott, J.C., Chaos and Time-Series Analysis, Oxford University Pres, 2003.
  • Brown, R., Bryant, P. ve Abarbanel, H.D.I., “Computing the Lyapunov Spectrum of A Dy-namical System from an Observed Time Series”, Phys. Rev. A, Cilt 43, No 6, 2787-2806, 1991.
  • Fraser, A.M. ve Swinney, H.L., “Independent Coordinates for Strange Attractors from Mutual Information”, Phys. Rev. A , Cilt 33, 1134, 1986.
  • Broomhead, D.S. ve King, G.P., “Extracting Qualitative Dynamics from Experimental Data”, Physica D, Cilt 20, No 2, 217-236, 1986.
  • Cao, L., “Practical Method for Determinig the Minimum Embedding Dimension of a Scalar Time Series”, Physica D, Cilt 110, No 1, 43-50, 1997.
  • Kaplan, D.T. ve Glass, L., “Direct Test for De¬ter-minism in a Time Series”, Phys. Rev. Lett., Cilt 68, 427-430, 1992.
  • Kennel, M.B., Brown R. ve Abarbanel H.D.I., “Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction”, Phys. Rev. A, Cilt 45, 3403-3411, 1992.
  • Yavaş, Ö., Örgü Titreşimleri ve Örgülerde Kaos Analizi, Doktora Tezi, Ankara Üniv., Fen Bilimleri Enstitüsü, 1992.
  • Faure, P. ve Korn, H., “Is There Chaos in the Brain I. Concepts of Nonlinear Dynamics and Methods of Investigation”, Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie, Cilt 324, No 9, 773-793, 2001.
  • Eckmann,J.P. ve Ruelle, D., “Ergodic Theory of Chaos and Strange Attractors”, Reviews of Modern Physics, Cilt 57, No 3, 617-656, 1985.
  • Lillekjendlie, B., Kugiumtzis, D. ve Chiristophersen, N., “Chaotic Time Series - Part II: System Iden¬ti¬fication and Prediction”, Modeling, Iden¬ti¬fi¬ca¬tion and Control, Cilt 15, No 4, 225-243, 1994.
  • Wolf, A., Swift, J.B., Swinney, H.L. ve Vastano, J.A., “Determining Lyapunov Exponents from a Time Series”, Physica D, Cilt 16, No 3, 285-317, 1985.
  • Geist, K., Parlitz, U. ve Lauterborn, W., “Comparison of Different Methods for Computing Lyapunov Exponents”, Prog. Theor. Phys., Cilt 83, No 5, 875-893, 1990.
  • Eckmann, J.P., Kamphorst, S.O., Ruelle, D. ve Ciliberto, S., “Lyapunov Exponents from Time Series”, Phys. Rev. A, Cilt 34, 4971-4979, 1986.
  • Kruel, T.M., Eiswirthy, M. ve Schneider F.W., “Computation of Lyapunov Spectra: Effect of Interactive Noise and Application to A Chemical Oscillator”, Physica D, Cilt 63, 117-137, 1993.
  • Gencay, R. ve Dechert, W.D., “An Algorithm for the n Lyapunov Exponents from Noisy Chaotic Time Series”, Physica D, Cilt 59,142-157, 1992.
  • Abarbanel, H.D.I., Brown, R. ve Kennel M.B., “Lyapunov Exponents in Chaotic Systems: Their Importance and Their Evaluation Using Observed Data”, Int. J. Mod. Phys. B, Cilt B5, Sayı 9, 1347-1375, 1991.
  • Briggs K., “An Improved Method for Estimating Liapunov Exponents of Chaotic Time Series”, Physics Letters A, Cilt 151, 27-32, 1990.
  • Oiwa, N.N. ve Fiedler-Ferrara N., “A Fast Algorithm for Estimating Lyapunov Exponents from Time Series”, Physics Letters A, Cilt 246, 117-121, 1998.
  • Sano, M. ve Sawada, Y., “Measurement of the Lyapunov Spectrum from A Chaotic Time Series”, Phys. Rev. Lett., Cilt 55, 1082-1085, 1985.
  • Wagner, C.D. ve Persson, P.B., “Chaos in the Cardiovascular System: An Update”, Cardio-vascular Research, Cilt 40, No 2, 257-264, 1998.
  • Rosenstein, M.T., Collins, J.J. ve De Luca C. J., “A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets”, Physica D, Cilt 65, 117, 1993.
  • Brown, R., “Calculating Lyapunov Exponents for Short and/or Noisy Data Set”, Phys Rev E, Cilt 47, 3962-3969, 1993.
  • Kantz, H., “A Robust Method to Estimate the Maximal Lyapunov Exponent of a time Series”, Phys. Lett. A, Cilt 185, 77-87, 1994.
  • Sato, S., Sano, M. ve Sawada, Y., “Practical Methods of Measuring the Generalized Dimension and Largest Lyapunov Exponent in High Dimen¬sional Chaotic Systems”, Prog. Theor. Phys., Cilt 77, No 1, 1-5, 1987.
  • Grond, F., Diebner, H.H., Sahle, S., Mathias, A., Fischer, S. ve Rössler, O.E., “A Robust, Locally Interpretable Algorithm for Lyapunov Exponents”, Chaos, Solitons and Fractals, Cilt 16, No 5, 841-852, 2003.
  • Grond, F. ve Diebner, H.H., “Local Lyapunov Exponents for Dissipative Continuous Systems”, Chaos, Solitons and Fractals, Cilt 23, No 5, 1809-1817, 2005.
  • Stefanski, A., Dabrowski, A. ve Kapitaniak, T., “Evaluation of the Largest Lyapunov Exponent in Dynamical Systems with Time Delay”, Chaos, Solitons and Fractals, Cilt 23, No 5, 1651-1659, 2005.
  • Lu, J., Yang, G., Oh, H. ve Luo, A.C.J., “Com-puting Lyapunov Exponents of Continuous Dynamical Systems: Method of Lyapunov Vectors”, Chaos, Solitons and Fractals, Cilt 23, No 5, 1879-1892, 2005.
  • Yonemoto, K., Yanagawa, T., “Estimating the Lyapunov Exponent from Chaotic Time Series with Dynamic Noise”, MHF Preprint Series, MHF 2004-1, Kyushu University, 2004.
  • Liu, H.F., Dai, Z.H., Li, W.F., Gong, X. ve Yu, Z.H., “Noise Robust Estimates of the Largest Lyapunov Exponent”, Phys. Lett. A, Cilt 341, 119-127, 2005.
  • Bünner, M.J. ve Hegger R., “Estimation of Lyapunov Spectra from Space-Time Data”, Phys. Lett. A, Cilt 258, 25-30, 1999.
  • Eckmann, J.P. ve Ruelle, D., “Fundamental Limi¬¬tations for Estimating Dimension and Lyapunov Exponents in Dynamical Systems”, Physica D, Cilt 56, 185-187, 1992.
  • Casaleggio, A. ve Braiotta, S., “Estimation of Lyapunov Exponents of ECG Time Series- The Influence of Parameters”, Chaos, Solitons and Fractals, Cilt 8, No 10, 1591-1599, 1997.
  • Bracic, M. ve Stefanovska, A., “Nonlinear Dynamics of the Blood Flow Studied by Lyapunov Expo-nents”, Bulletin of Mathematical Biology, Cilt 60, 417-433, 1998.
  • Argyris, J., Andreadis, I., Pavlos, G. ve Athanasiou, M., “On the Influence of Noise on the Largest Lyapunov Exponent and on the Geomet¬ric Structure of Attractors”, Chaos, Solitons and Fractals, Cilt 9, No 6, 947-958, 1998.
  • Zhang, J., Lam, K.C., Yan, W.J., Gao, H. ve Li, Y., “Time Series Prediction Using Lyapunov Exponents in Embedding Phase Space”, Com-puters and Electrical Engineering, Cilt 30, 1-15, 2004.
  • Awrejcewicz, J., Dzyubak, L. ve Grebogi, C., “A Direct Numerical Method for Quantifying Regular and Chaotic Orbits”, Chaos, Solitons and Fractals, Cilt 19, No 3, 503-507, 2004.
  • Mandelbrot, B.B., Fractals: Form, chance, and dimension, W.H. Freeman, San Francisco, 1997.
  • Hentschel, H.G.E. ve Procaccia, I., “The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors”, Physica D, Cilt 8, 435-444, 1983.
  • Camastra, F. ve Vinciarelli, A., “Estimating the Intrinsic Dimension of Data with a Fractal-Based Method”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Cilt 24, No 10, 2002.
  • Kaplan, J. ve Yorke, J., “Fuctional Differential Equations and the Approximation of Fixed Points”, Lecture Notes in Mathematics, No 730, Berlin: SpringerVerlag, 1979.
  • Grassberger, P. ve Procaccia, I., “Measuring the Strangenes of Strange Attractors” Physica D, Cilt 9, 189-208, 1983.
  • Theiler, J., “Estimating Fractal Dimension”, J. Opt. Soc. Am. A, Cilt 7, 1055-1073, 1990.
  • Ding, M., Grebogi, C., Ott, E., Sauer, T. ve Yorke, J.A., “Estimating Correlation Dimension from Chaotic Time Series: When Does Plateau Onset Occur”, Physica D, Cilt 69, 404-424, 1993.
  • Corana, A., Bortolan, G. ve Casaleggio, A. “Most Probable Dimension Value and Most Interval Methods for Automatic Estimation of Dimension from Time Series”, Chaos, Solitons and Fractals, Cilt 20, No 4, 779-790, 2004.
  • Radhakrishnan, P., Lian T.L. ve Sagar B.S.D., “Estimation of Fractal Dimension Through Morphological Decomposition”, Chaos, Solitons and Fractals, Cilt 21, No 3, 563-572, 2004.
  • Casaleggio, A. ve Corana, A., “A Posteriori Tests to Validate Dimension Estimates from Time Series”, Chaos, Solitons and Fractals, Cilt 11, No 13, 2017-2030, 2000.
  • Isliker, H.A., “A Scaling Test for Correlation Di-mensions”, Phys. Lett. A, Cilt 169, 313-322, 1992.
  • Grassberger, P. ve Procaccia, I., “Estimation of the Kolmogorov Entropy From a Chaotic Signal” Phys. Rev. A, Cilt 28, 2591-2593, 1983.
  • Abarbanel, H.D.I., Brown, R. ve Kadtke, J.B., “Prediction in Chaotic Nonlinear Systems: Methods for Time Series with Broadband Fourier Spectra”, Phys. Rev. A, Cilt 41, No 4, 1782-1807, 1990.
  • Farmer, J.D. ve Sidorowich, J.J., “Predicting Chaotic Time Series”, Phys. Rev. Lett. Cilt 59, No 8, 845-848, 1987.
  • Casdagli, M., “Nonlinear Prediction of Chaotic Time Series”, Physica D, Cilt 35, 335-356, 1989.
  • Brown, R., Rulkov, N.F. ve Tracy, E.R., “Modelling and Synchronizing Chaotic Systems from Time-Series Data”, Phys. Rev. E, Cilt 49, No 5, 3784-3800, 1994.
  • Linsay, P.S., “An Efficient Method of Forecast-ing Chaotic Time Series Using Linear Interpola-tion”, Phys. Lett. A, Cilt 153, 353-356, 1991.
  • Rowlands G. ve Sprott J.C., “Extraction of Dynamical Equations from Chaotic Data”, Physica D, Cilt 58, 251-259, 1992.
  • Baker, G.L., Gollub, J.P. ve Blackburn, J.A., “Inverting Chaos: Extracting System Parameters from Experimental Data”, Chaos, Cilt 6, No 4, 528-533, 1996.
  • Narayanan, K., Govindan, R.B. ve Gopinathan, M.S., “Unstable Periodic Orbits in Human Cardiac Rhythms”, Phys. Rev. E, Cilt 57, No 4, 4594-4603, 1998.
  • Pierson, D. ve Moss, F., “Detecting Periodic Unstable Points in Noisy Chaotic and Limit Cycle Attractors with Applications to Biology”, Phys. Rev. Lett., Cilt 75, 2124-2127, 1995.
  • Lathrop, D.P. ve Kostelich, E.J., “Characterization of an Experimental Strange Attractor by Periodic Orbits”, Phys. Rev. A, Cilt 40, 4028-4031, 1989.
  • So, P., Ott, E., Sauer, T., Gluckman, B.J., Grebogi, C. ve Schiff, S.J., “Extracting Unstable Periodic Orbits from Chaotic Time Series Data”, Phys. Rev. E, Cilt 55, 5398-5417, 1997.
  • Ott, E., Grebogi, C. ve Yorke, J.A., “Controlling Chaos”, Phys. Rev. Lett., Cilt 64, 1196-1199, 1990.
  • Pawelzik, K. ve Schuster, H.G., “Unstable Periodic Orbits and Prediction”, Phys. Rev. A, Cilt 43, 1808-1812, 1991.
  • Mirus, K.A. ve Sprott J.C., “Controlling Chaos in Low- and High-Dimensional Systems with Periodic Parametric Perturbations”, Phys. Rev. E, Cilt 59, No 5, 5313-5424, 1999.
  • Thelier, J., Eubank, S., Longtin, A., Galdrikian, B. ve Farmer J.D., “Testing for Nonlinearity in Time Series: The Method of Surrogate Data”, Physica D, Cilt 58, 77-94, 1992.
  • Takens, F., “Detecting Nonlinearities in Station-ary Time Series”, Int. J. Bifurcation and Chaos, Cilt 3, No 2, 241-256, 1993.
  • Kaplan, D.T., “Exceptional Events as Evidence for Determinism”, Physica D, Cilt 73, 38-48, 1994.
  • Schreiber, T. ve Schmitz, A., “Improved Surro-gate Data for Nonlinearity Tests”, Phys. Rev. Lett., Cilt 77, No 4, 635-638, 1996.
  • Yu, D., Lu, W. ve Harrison, R.G., “Detecting Dy-namical Nonstationarity in Time Series Data”, Chaos, Cilt 9, No 4, 1999.
  • West, B.J., Zhang, R., Sanders, A.W., Miniyar, S., Zuckerman, J.H. ve Levine, B.D., “Fractal Fluctuations in Cardiac Time Series”, Physica A, Cilt 270, 552-566, 1999.
  • Hagerman, I., Berglund, M., Lorin, M., Nowak, J. ve Sylvén C., “Chaos-Related Deterministic Regulation of Heart Rate Variability in Time and Frequency Domains: Effects of Autonomic Blockade and Exercise”, Cardiovascular Research, Cilt 31, No 3, 410-418, 1996.
  • Poon, C-S. ve Merrill, C.K., “Decrease of Cardiac Chaos in Congestive Heart Failure”, Nature, Cilt 389; 492-495, 1997.
  • Cohen, M.E., Hudson, D.L., Anderson, M.F. ve Vazquez C., “Blood Flow Data Exhibit Chaotic Properties”, Int. J. Microcomputer Applications, Cilt 12, No 3, 82-87, 1994.
  • Yip, K.P., Holstein-Rathlou, N.H. ve Marsh, D.J., “Chaos in Blood Flow Control in Genetic and Renovascular Hypertensive Rats”, Am. J. Physiol. Soc., Cilt 261, F400-F408, 1991.
  • Carolan-Ress, G., Tweddel, A.C., Naka, K.K. ve Griffith, T.M., “Fractal Dimension of Laser Doppler Flowmetry Time Series”, Medical Engineering and Physics, Cilt 24, 71-76, 2002.
  • Stefanovska, A. ve Bracic, M., “Reconstructing Cardiovascular Dynamics”, Control Engineering Practice, Cilt 7, 161-172, 1999.
  • Wang, Z., Li, Z., Wei, Y.,Ning X. ve Lin, Y., “Lyapunov Exponents for Synchronous 12-lead ECG Signals ”, Chinese Science Bulletin, Cilt 47, No 21, 2002.
  • Small, M. ve Judd K., “Detecting Nonlinearity in Experimental Data” Int. Journal of Bifurcation and Chaos, Cilt 8, No 6, 1231-1244, 1998.
  • Ahlstrom, C., Johansson, A., Hult, P. ve Ask, P., “Chaotic Dynamics of Respiratory Sounds”, Chaos, Solitions and Fractals, Baskıda, 2005.
  • Small, M., Yu, D., Simonotto, J., Harrison, R.G., Grubb, N. ve Fox, K.A.A., “Uncovering Non-linear Structure in Human ECG Recordings”, Chaos, Solitions and Fractals, Cilt 13, No 8, 1755-1762, 2002.
  • Yu, D., Small M., Harrison, R.G., Robertson, C., Clegg, G., Holzer, M. ve Sterz, F., “Measuring Temporal Complexity of Ventricular Fibrillation”, Physics Letters A, Cilt 265, 68-75, 2000.
  • Yeragani, V.K., Radhakrishna, R.K.A., Ramakrishnan, K.R. ve Srinivasan, S.H., “Measures of LLE of Heart Rate in Different Frequency Bands: A Possible Measure of Relative Vagal and Sympathetic Activity”, Nolinear Analysis: Real World Applications, Cilt 5, 441-462, 2004.
  • Acharya, R. U., Kumar, A., Bhat, P.S., Lim, C.M., Iyengar, S.S., Kannathal, N. ve Krishnan, S.M., “Classification of Cardiac Abnormalities Using Heart Rate Signals”, Medical and Biological Engineering and Computing, Cilt 42, 288-293, 2004.
  • Keshavan, M.S., Cashmere, J.D., Miewald, J. ve Yeragani, V.K., “Decreased Nonlinear Complexity and Chaos during Sleep in First Episode Schizo¬phrenia: A Preliminary Report”, Schizophrenia Research, Cilt 71, 263-272, 2004.
  • Ferri, R., Salvatore, P., Nobili, L., Billiard M. ve Ferrillo F., ”Correlation Dimension of EEG Slow-Wave Activity During Sleep in Narcoleptic Patients Under Bed Rest Conditions”, Int. J. Psychophysiology, Cilt 34, 37-43, 1999.
  • Fell, J., Mann, K., Röschke, J. ve Gopinathan, M.S., “Nonlinear Analysis of Continuous ECG During Sleep I. Reconstruction”, Biological Cybernetics, Cilt 82, No 6, 477-483, 2000.
  • Fell, J., Mann, K., Röschke, J. ve Gopinathan, M.S., “Nonlinear Analysis of Continuous ECG During Sleep II. Dynamical Measures”, Biological Cybernetics, Cilt 82, No 6, 485-491, 2000.
  • Wessel, N., Schumann, A., Schirdewan, A., Voss, A. ve Kurths, J., “Entropy Measures in Heart Rate Variability Data”, Lecture Notes in Computer Science, Cilt 1933, 78-87, 2000.
  • Yoshikawa, Y. ve Yasuda, Y., “Non-Linear Dynamics in Heart Rate Variability in Different Generations”, Bulletin of Toyohashi College, Cilt 7, 63-78, 2003.
  • Carvajal, R., Wessel, N., Vallverdu, M., Caminal, P. ve Voss, A., “Correlation Dimension Analysis of Heart Rate Variability in Patients with Dilated Cardiomyopathy”, Computer Methods and Programs in Biomedicine, Cilt 78, 133-140, 2005.
  • Tsuda, I., Thara, T. ve Iwanaga, H., “Chaotic Pulsation in Human Capillary Vessels and Its Dependence on Mental and Physical Conditions”, Int.J. Bifurc. Chaos, Cilt 2, 313-324, 1992.
  • May, P., Gerbault, O., Arrouvel, C., Revol, M., Servant, J.M. ve Vicaut, E., “Nonlinear Analysis of Arterial Oscillated Flow in Experimental Stenosis and Microsurgical Anastomosis”, J. Surgical Research, Cilt 99, 53-60, 2001.
  • May, P., Arrouvel, C., Revol, M., Servant, J.M. ve Vicaut, E., “Detection of Hemodynamic Tur-bulance in Experimental Stenosis: An in Vivo Study in the Rat Carotid Artery”, J. Vascular Research, Cilt 39, 21-29, 2002.
  • Pascolo, P.B., Marini, A., Carniel R. ve Barazza, F., “Posture as a Chaotic System and an Appli-cation to the Parkinson’s Disease”, Chaos, Solitons and Fractals, Cilt 24, No 5, 1343-1346, 2005.
  • Radhakrishna, K.A.Rao ve Yeragani, V.K., “Decreased Chaos and Increased Nonlinearity of Heart Rate Time Series in Patients with Panic Disorder”, Autonomic Neuroscience: Basic and Clinical, Cilt 88, 99-108, 2001.
  • Orel, V.E., Romanov, A.V., Dzyatkovskaya, N.N. ve Mel’nik, Y.I., “The Device and Algorithm for Estimation of the Mechanoemisson Chaos in Blood of Patients with Gastric Cancer”, Medical Engineering and Physics, Cilt 24, 365-371, 2002.
  • Güler, İ. ve Übeyli, E.D., “Detecting Variability of Internal Carotid Arterial Doppler Signals by Lyapunov Exponents”, Medical Engineering and Physics, Cilt 26, No 9, 763-771, 2004.
  • Güler, N.F., Übeyli, E.D. ve Güler, İ., “Recurrent Neural Networks Employing Lyapunov Exponents for EEG Signals Classification”, Expert System with Applications, Cilt 29, 506-514, 2005.
Toplam 117 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Derya Yılmaz Bu kişi benim

Nihal Güler Bu kişi benim

Yayımlanma Tarihi 2 Nisan 2013
Gönderilme Tarihi 2 Nisan 2013
Yayımlandığı Sayı Yıl 2006 Cilt: 21 Sayı: 4

Kaynak Göster

APA Yılmaz, D., & Güler, N. (2013). KAOTİK ZAMAN SERİSİNİN ANALİZİ ÜZERİNE BİR ARAŞTIRMA. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 21(4).
AMA Yılmaz D, Güler N. KAOTİK ZAMAN SERİSİNİN ANALİZİ ÜZERİNE BİR ARAŞTIRMA. GUMMFD. Mart 2013;21(4).
Chicago Yılmaz, Derya, ve Nihal Güler. “KAOTİK ZAMAN SERİSİNİN ANALİZİ ÜZERİNE BİR ARAŞTIRMA”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 21, sy. 4 (Mart 2013).
EndNote Yılmaz D, Güler N (01 Mart 2013) KAOTİK ZAMAN SERİSİNİN ANALİZİ ÜZERİNE BİR ARAŞTIRMA. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 21 4
IEEE D. Yılmaz ve N. Güler, “KAOTİK ZAMAN SERİSİNİN ANALİZİ ÜZERİNE BİR ARAŞTIRMA”, GUMMFD, c. 21, sy. 4, 2013.
ISNAD Yılmaz, Derya - Güler, Nihal. “KAOTİK ZAMAN SERİSİNİN ANALİZİ ÜZERİNE BİR ARAŞTIRMA”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 21/4 (Mart 2013).
JAMA Yılmaz D, Güler N. KAOTİK ZAMAN SERİSİNİN ANALİZİ ÜZERİNE BİR ARAŞTIRMA. GUMMFD. 2013;21.
MLA Yılmaz, Derya ve Nihal Güler. “KAOTİK ZAMAN SERİSİNİN ANALİZİ ÜZERİNE BİR ARAŞTIRMA”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 21, sy. 4, 2013.
Vancouver Yılmaz D, Güler N. KAOTİK ZAMAN SERİSİNİN ANALİZİ ÜZERİNE BİR ARAŞTIRMA. GUMMFD. 2013;21(4).