Loading [a11y]/accessibility-menu.js
GÖZENEKLİ MALZEMELERİN ETKEN ISIL İLETKENLİKLERİ ÜZERİNE MEVCUT ÇALIŞMALAR
Yıl 2010 ,
Cilt: 25 Sayı: 2, 0 - , 15.02.2013
Numan Yüksel
Atakan Avcı
Öz
Bu çalışmada, gözenekli maddelerin etken ısıl iletkenliğinin modellenmesine ve/veya tahminine yönelikliteratürde mevcut çalışmalar incelenmiştir. Bu çalışmalar, literatürde tespit edilen ve farklı uygulamalarıkapsayan bazı deneysel sonuçlar dikkate alınarak analiz edilmiştir. Sonuçlar tablo halinde verilmiş ve modeller,uygulanabilirlik aralığı, kullanım kolaylığı ile değişik parametrelerin etkileri açısından değerlendirilmiştir.Sonuçta genel olarak kullanılabilecek bağıntılar elde etmek yerine belirli yapılarda ve belirli gözeneklilikaralığında sınırlı bir hata töleransı ile kullanılabilecek bağıntıları seçmenin önem kazandığı ve özellikle yükseksıcaklığın etken ısıl iletkenliğine etkisinin çalışılması gerektiği sonucuna varılmıştır.
Kaynakça
KAYNAKLAR (REFERENCES)
Bart, G. C. J., Thermal conduction in non
homogeneous and phase change media,
Doctoral Thesis, Delft University of Technology,
The Netherlands, 1994.
Pham, Q.T. ve Willix, J., “Thermal conductivity
of fresh lamb meat, offal and fat in the range -40
to +30 oC: measurements and correlations”, J.
Food Sci., 54 (3), 508–515,1989.
Singh, R.ve Kasana, H.S., “Computational aspects of
effective thermal conductivity of highly porous metal
foams”, Applied Thermal Engineering, 24, 1841–
, 2004
Tavman, I.H., “Effective Thermal Conductivity
of Isotropic Polymer Composites”, Int. Comm.
Heat Mass Transfer, 25(5), 723-732, 1998.
Belova, I.V. ve Murch, G.E., “Monte Carlo
Simulation of the Effective Thermal Conductivity
in Two-Pase Material”, Journal of Materials
Processing Technology, 153-154, 741-745,
-
Ochs, F., Heidemann, W. ve Müller-Steinhagen,
H., “Effective Thermal Conductivity of
Moistened Insulation Materials As A Function of
Temperature”, International Journal of Heat
and Mass Transfer, 51, 539–552, 2008.
Maqsood, A. ve Kamran, K., “Thermophysical
properties of porous sandstones: measurements
and comparative study of some representative
thermal conductivity models”, International
Journal of Thermophysics,; 26 (5), 1617-1631,
-
Cernuschi, F., Ahmaniemi, S., Vuoristo, P. ve
Mäntylä, T., “Modelling of thermal conductivity
of porous materials: application to thick thermal
barrier coatings”, Journal of the European
Ceramic Society, 24, 2657-2667, 2004.
Singh, K.J., Singh, R. ve Chaudhary, D.R., “Heat
conduction and a porosity correction term for
spherical and cubic particles in a simple cubic
packing”, J. Phys. D: Appl. Phys., 31, 1681–
, 1998.
Kohout, M., Collier, A.P. ve Štĕpánek, F.,
“Effective thermal conductivity of wet particle
assemblies”, International Journal of Heat and
Mass Transfer, 47, 5565–5574, 2004.
Chaudhary, D. R. ve Bhandari, R. C., “Heat transfer
through a three-phase porous medium”, Journal of
Physics D, British Journal of Applied Physics, 1,
–817, 1968.
Maxwell, J.C., A Treatise on Electricity and
Magnetism, third ed, Dover Publications Inc.,
New York, A.B.D., 1954.
Beck, A.E., “An improved method of computing
the thermal conductivity of fluid-filled
sedimentary rocks'”, Geophysics, 41, 133-144,
-
Carson, J. K., Lovatt, S. J., Tanner, D. J. ve
Cleland, A.C., “Thermal Conductivity Bounds for
Isotropic Porous Materials”, International
Journal of Heat and Mass Transfer,48, 2150-
, 2005.
Brailsford, A.D. ve Major, K.G., “The thermal
conductivity of aggregates of several phases,
including porous materials”, Br. J. Appl. Phys.,
, 313–319, 1964.
Carson, J. K., Lovatt, S.J., Tanner, D.J. ve
Cleland, A.C., “Predicting the effective thermal
conductivity of unfrozen, porous foods”, Journal
of Food Engineering, 75, 297–307, 2006.
Carson, J. K., “Review of effective thermal
conductivity models for foods”, International
Journal of Refrigeration, 29, 958-967, 2006.
Carson, J. K., Prediction of the thermal
conductivity of porous foods, PhD Thesis,
Massey University, Palmerston North, New
Zealand, 2002.
Carson, J. K., Lovatt, S. J., Taner, D.J. ve
Cleland, A.C., “An analysis of the influence of
material structure on the effective thermal
conductivity of theoretical porous materials using
finite element simulations”, International
Journal of Refrigeration, 26, 873–880, 2003.
Nielsen, L.E., Mechanical Properties of
Polymers and Composites, Vol. 2., Marcel
Dekker, New York, 1974.
Nielsen, L. E., “Thermal conductivity of
particulate-filled polymers”, J. Appl. Polym.
Sci., 17, 3819-3825, 1973.
Pezzotti, G., Kamada, I. ve Miki, S., “Thermal
conductivity of AlN/polystyrene interpenetrating
Networks”, Journal of the European Ceramic
Society, 20, 1197-1203, 2000.
Gonzo, E. E., “Estimating correlations for the
effective thermal conductivity of granular
materials”, Short communication, Chemical
Engineering Journal, 90, 299–302, 2002.
Ghodoossi, L., Hava Boşluklu Yapı
Elemanlarında Isı Geçişi, Master Tezi, İstanbul
Teknik Üniversitesi, Fen Bilimleri Enstitüsü,
Makine Mühendisliği Ana Bilimdalı, İstanbul,
, 1988.
Fu, S.-Y. ve Mai, Y.-W., “Thermal Conductivity
of Misaligned Short-Fiber-Reinforced Polymer
Composites”, Journal of Applied Polymer
Science, 88, 1497–1505, 2003.
Halpin, J.C., “Stiffness and expansion estimates
for oriented short fiber composites”, Journal of
Composite Materials, 3, 732–734, 1969.
Gemci, R., Lif takviyeli polimer kompozit
malzemelerde aşınma ve ısı iletimlerinin
iyileştirilmesi, Doktora Tezi, Uludağ
Üniversitesi, Fen Bilimleri Enstitüsü, Tekstil
Mühendisliği Anabilim dalı, Bursa, 102, 1996.
Agarwal, B.D., Broutman L.J. Analysis and
Performance of Fiber Composites, John Wiley
and Sons, U.S.A., 1980.
Levy, F.L., “A modified Maxwell–Eucken
equation for calculating the thermal conductivity of two-component solutions or mixtures”,
International Journal of Refrigeration, 4(4),
–225, 1981.
Becker, B.R. ve Fricke, B.A., “Food
thermophysical property models”, Int. Comm.
Heat Mass Transfer, 26 (5), 627-636, 1999.
Wang, J., Carson, J.K., North, M.K. ve Cleland
D.J., “A New Approach to Modelling The
Effective Thermal Conductivity of
Heterogeneous Materials”, International
Journal of Heat and Mass Transfer, 49, 3075-
, 2006.
Landauer, R., “The electrical resistance of binary
metallic mixtures”, J. Appl. Phys., 23, 779–784,
-
Kirkpatrick, S., “Percolation and conduction”,
Reviews of Modern Physics, 45, 574–588, 1973.
Davis, H.T., Valencourt, L.R. ve Johnson, C.E.,
“Transport processes in composite media”, J.
Am. Ceram. Soc., 58, 446-452, 1975.
Xue, Q. ve Xu, W.-M., “A Model of Thermal
Conductivity of Nanofluids with Interfacial
Shells”, Materials Chemistry and Physics, 90,
–301, 2005.
Krischer, O., The scientific fundamentals of drying
technology, Springer-Verlag, Berlin, 1963.
Hamdami, N., Monteau, J.-Y. ve Le Bail, A.,
“Effective thermal conductivity of a high porosity
model food at above and sub-freezing
temperatures”, International Journal of
Refrigeration, 26, 809–816, 2003.
Maroulis, Z.B., Krokida, M.K. ve Rahman, M.S.,
“Astructural generic model to predict the
effective thermal conductivity of fruits and
vegetables during drying”, J. Food Eng., 52, 47–
, 2002.
De Vries, U., Sluimer, P.ve Bloksma, A.H., “A
quantitative model for heat transport in dough and
crumb during baking”, International Symposium
on Cereal Science and Technology, Lund
University, Ystad, Sweden, 174–88, 13–16 June
-
Russell, H.W., “Principles of Heat Flow in
Porous Insulators”, J. Am. Ceram. Soc., 18, 1-5,
-
Tseng, C., Yamaguchit, M.ve Ohmorit, T.,
“Thermal Conductivity of Polyurethane Foams
from Room Temperature to 20 K”, Cryogenics,
, 305-312, 1997.
Chiew, Y.C. ve Glandt, E., “The effect of
structure on the conductivity of a dispersion”, J.
Coll. Interf. Sci., 94, 90–104, 1983.
Francl, J. ve Kingery, W.D., “Thermal conductivity:
IX, Experimental investigation of effect of porosity
on thermal conductivity”, J. Am. Ceram. Soc., 37,
–107, 1954.
Sheldon, R.P., Composite polymeric materials,
Applied Science Publishers, London and New
York, 86-88, 1982.
Chawla, K.K., Composite Materials-Science and
Engineering, Springer-Verlag, 1987.
Ozilgen, M., Food Process Modeling and
Control: Chemical Engineering Applications,
CRC Press, 518, 1998.
Hill, J.E., Leitman, J.D. ve Sunderland, J.E.,
“Thermal conductivity of various meats”, Food
Technology, 21, 1143–1148, 1967.
Rizvi, S.S.H., Thermodynamic Properties in
Dehydration, Editör: Rao, M.A. ve Rizvi, S.S.H.,
Engineering Properties of Foods, Marcel Dekker,
Newyork, 531, 1994.
Ashrae Handbook, Refrigeration, American
Society of Heating, Refrigeration and Airconditioning
Engineers Inc., GA, Atlanta, 2002.
Rahman, M.S., Thermophysical properties of
foods, Editör: Sun, D.-W., Advances in food
refrigeration, Leatherhead Publishing, Surrey,
England, 2001.
Kopelman, I. J., Transient heat transfer and
thermal properties in food systems, Doktora
Tezi, Food Science Departmant, Michigan State
University, East Lansing, MI, U.S.A., 1966.
Jeffrey, D.J., “Conduction through a random
suspension of spheres”, Proc. R. Soc. Lond. A,
, 355–367, 1973.
Xue, Q.-Z., “Model for effective thermal
conductivity of nanofluids”, Physics Letters
A,307 (5-6), 313–317, 2003.
Bauer, T.H., “A general analytical approach
toward the thermal conductivity of porous
media”, Int. J. Heat Mass Transfer, 36, 4181–
, 1993.
Babanov, A.A., “Method of calculation of
thermal conduction coefficient of capillary
porous material”, Sov. Phys. Technol. Phys., 2,
–484, 1957.
Ye, Z., Wells, C.M., Carrington, C.G. ve Hewitt,
N.J., “Thermal Conductivity of Wool and Wool-Hemp
Insulation”, International Journal of Energy
Research, 30, 37-49, 2006.
Symons, J.G., Clarke, R.E. ve Pierce, J.V.,
“Thermal performance of several Australian
fibrous insulating materials”, Journal of
Thermal Insulation and Building
Envelopes,19, 72–88, 1995.
Kohout, M., Collier, A.P. ve Štĕpánek, F.,
“Microstructure and transport properties of wet
poly-disperse particle assemblies”, Powder
Technology, 156, 120–128, 2005.
Cheng, S.C. ve Vachon, R.I., "The Prediction of the
Thermal Conductivity of Two and Three Phase Solid
Heterogeneous Mixtures”, Int.J. Heat Mass
Transfer, 12, 249, 1969.
Agari, Y., Uno, T., “Estimation on Thermal
Conductivities of Filled Polymers”, J. Appl.
Polym. Sci., 32, 5705-5712, 1986.
Gori, F., “A Theoretical Model for Predicting the
Effective Thermal Conductivity of Unsaturated
Frozen Soils”, Proceedings of The 4th International Conference on Permafrost, vol.
, Editör: Péwé, T. L., Washington DC: National
Academy Press, Fairbanks, U.S.A., 363-368,
-
Gori, F., Marino, C. ve Pietrafesa, M., “Experimental
measurements and theoretical predictions of the
thermal conductivity of two phases glass beads”,
International communications in heat and mass
transfer, 28 (8), 1091-1102 (17), 2001.
Barea, R., Osendi, M.I., Ferreira, J.M.F. ve
Miranzo, P. “Thermal conductivity of highly
porous mullite material”, Acta Materialia, 53,
-3318, 2005.
Singh, J. R., “Effective thermal conductivity of
highly porous two-phase systems”, Applied
Thermal Engineering, 24, 2727–2735, 2004.
Argento, C. ve Bouvard, D., “Modeling the
effective thermal conductivity of random packing
of spheres through densification”, Int. J. Heat
Mass Transfer, 39, 1343–1350, 1996.
Tichá, G., Pabst, W. ve Smith, D.S., “Predictive
model for the thermal conductivity of porous
materials with matrix-inclusion type
microstructure”, Journal of Materials Science
(Letters), 40 (18), 5045-5047, 2005.
Baschirow, A.B. ve Selenew, J.W., “Thermal
Conductivity of Composites”, Plaste Kaut, 23,
, 1976.
Bruggeman, D.A.G., “Calculation of physical
constants from heterogeneous substances”,
Annals of Physics, 24, 636, 1935.
Schulz, B., “Thermal conductivity of porous and
highly porous materials”, High Temperature-
High Pressures., 13, 649-660, 1981.
Meredith, R.E. ve Tobias, C.W., Conduction in
heterogeneous systems, Editör: Tobias, C.W.,
Advances in Electrochemistry and
Electrochemical Engineering, vol. 2, Interscience
Publisher, Newyork, 15-47, 1962.
Coble, R.L., Kingery, W.D., “Effect of porosity
on physical properties of sintered alumina”, J.
Am. Ceram. Soc., 39, 377–384, 1956.
Pabst, W., “Simple second-order expression: For the
porosity dependence of thermal conductivity”,
Journal of Materials Science, 40 (9-10), 2667-
(3), 2005.
Boomsma, K. ve Poulikakos, D., “On the
effective thermal conductivity of a threedimensionally
structured fluid-saturated metal
foam”, International Journal of Heat and Mass
Transfer, 44, 827-836, 2001.
Sugawara, A. ve Yoshizawa, Y., “An
Investigation on the Thermal Conductivity of
Porous Materials and its Application to Porous
Rock”, Australian J. Phys., 14, 468-469, 1961.
Fan, L.-W., Hu, Y.-C., Tian, T. ve Yu, Z.-T.,
“The prediction of effective thermal
conductivities perpendicular to the fibres of wood
using a fractal model and an improved transient
measurement technique”, International Journal
of Heat and Mass Transfer, 49, 4116–4123,
-
Peitgen, H.O. ve Saupe, D., The Science of
Fractal Images, Springer-Verlag Newyork Inc,
New York, U.S.A., 1988.
Hamilton, R.L. ve Crosser, O.K., “Thermal
conductivity of heterogeneous two-component
systems”, Industrial and Engineering
Chemistry Fundamentals, 1(3), 187–191, 1962.
Davis, R.H., “Thermal conductivity of mixture
with spherical inclusions”, Int. J. Thermophys.,
, 609-620, 1986.
Lu, S.-Y. ve Lin, H.-C., “Effective conductivity of
composites containing aligned spheroidal inclusions of
finite conductivity”, Journal of Applied Physics, 79,
, 1996.
Bhattacharya, A., Calmidi, V.V. ve Mahajan,
R.L., “Thermophysical properties of high
porosity metal foams”, International Journal of
Heat and Mass Transfer, 45, 1017-1031, 2002.
Kalaprasad, G., Pradeep, P., Mathew, G.,
Pavithran, C. ve Thomas, S., “Thermal
conductivity and thermal diffusivity analyses of
low-density polyethylene composites reinforced
with sisal, glass and intimately mixed sisal/glass
fibres”, Composites Science and Technology,
, 2967-2977, 2000.
Springer, G.S., Tsai, S.W., “Thermal
conductivities of unidirectional materials”, J.
Compos. Mater, 1, 166-173, 1967.
Verma, L.S., Shrotriya, A.K., Singh, R. ve
Chaudhary, D.R., “Thermal conduction in twophase
materials with spherical and non-spherical
inclusions”, J. Phys. D: Appl. Phys., 24, 1729–
, 1991.
Druma, A.M., Alam, M.K. ve Druma, C.,
“Analysis of Thermal Conduction in Carbon
Foams”, International Journal of Thermal
Sciences, 43, 689-695, 2004.
Gibson, P.W., “Multiphase heat and mass transfer
through hygroscopic porous media with
applications to clothing materials”, Technical
Report Natick/TR-97/005, U.S. Army Natick
Research, Development, and Engineering Center,
MA, Natick, U.S.A., 1996.
Patirop, C., Modeling of Thermal Performance of
Firefighter Protective Clothing During The
Intense Heat Exposure, Doktora Tezi, North
Carolina State University, Mechanical Engineering
Departmant, Raleigh, North Carolina, 2004.
Rahman, M.S. ve Chen, X.D., “A general form of
thermal conductivity equation as applied to an
apple: effects of moisture, temperature and
porosity”, Drying Technol., 13, 1-18, 1995.
Rahman, M.S., Chen, X.D. ve Perera, C.O., “An
improved thermal conductivity prediction model
for fruits and vegetables as a function of
temperature, water content and porosity”,
Journal of Food Engineering, 31, 163–170,
-
Rahman, M.S., “Thermal conductivity of four
food materials as a single function of porosity
and water content”, J. Food Eng., 15, 261-268,
-
Gupta, M., Yang, J. ve Roy, C., “Modelling the
Effective Thermal Conductivity in Polydispersed Bed
Systems: A Unified Approach using the Linear
Packing Theory and Unit Cell Model”, The Canadian
Journal of Chemical Engineering, 80, 830-839,
-
Gupta, M., Yang, J. ve Roy, C., “Predicting the Effective
Thermal Conductivity of Polydispersed Beds of Softwood
Bark and Softwood Char”, Fuel, 82, 395-404, 2003.
Tsotsas, E. ve Martin, H., “Thermal Conductivity
of Packed Beds: A Review”, Chem. Eng.
Process, 22, 19–37, 1987.
Zehner, P. ve Schlunder, E.U., “Thermal
Conductivity of Granular Materials at Moderate
Temperatures”, Chemie Ingr Tech., 42, 933-
, 1970.
Fu, X., Viskanta, R. ve Gore, J.P., “Prediction of
Effective Thermal Conductivity of Cellular
Ceramics”, Int. Comm. Heat Mass Transfer, 25
(2), 151-160, 1998.
Lee, S.L. ve Yang, J.H., “Modelling of Effective
Thermal Conductivity for A Nonhomogeneous
Anistropic Porous Medium”, Int. J. Heat Mass
Transfer, 41 (6-7), 931-937, 1997.
Park, J., Thermal/Fluid Characteristics of
Isotropic Plain-Weave Screen Laminates as
Heat Exchange Surfaces, Master Thesis,
University of Nevada, Mechanical Engineering
Departmant, Reno, Nevada, U.S.A., 2001.
Xu, J. ve Wirtz, R.A., “In-Plane Effective
Thermal Conductivity of Plain-Weave Screen
Laminates”, IEEE Transactions on components
and packaging Technologies, 25 (4), 615-620,
-
Hu, X.-J., Du, J.-H., Lei, S.-Y. ve Wang, B.-X.,
“Technical Note:A model for the thermal
conductivity of unconsolidated porous media
based on capillary pressure±saturation relation”,
International Journal of Heat and Mass
Transfer, 44, 247-251, 2001.
Liang, X.-G.ve Qu, W. “Effective thermal
conductivity of gas-solid composite materials and
the temperature difference effect at high
temperature”, International Journal of Heat
and Mass Transfer, 42 (10), 1885-1893(9),
-
Soma Shekar, S., Thermal performance of
plain weave screen as a heater surface in
paralel plate free convection, Master Tezi,
University of Nevada, Mechanical Engineering,
Reno, Nevada, 94, 2006.
Seo, B.H., Cho, Y.J., Youn, J.R., Chung, K.,
Kang, T.J. ve Park, J.K. “Model for Thermal
Conductivities in Spun Yarn Carbon Fabric
Composites”, Polymer Composites, 26, 791-
, 2005.
Carson, J.K., Lovatt, S. J., Tanner, D.J. ve
Cleland, A.C., “Experimental measurements of
the effective thermal conductivity of a pseudoporous
food analogue over a range of porosities
and mean pore sizes”, Journal of Food
Engineering, 63, 87–95, 2004.
Jiang, P., Li, M., Lu, T., Yu, L. ve Ren, Z.,
“Experimental Research on Convection Heat
Transfer in Sintered Porous Plate Channels”,
International Journal of Heat and Mass
Transfer, 47, 2085-2096, 2004.
Jang, B.K. ve Matsubara, H., “Influence of
rotation speed on microstructure and thermal
conductivity of nano-porous zirconia layers
fabricated by EB-PVD”, Scripta Materialia,52,
-558, 2005.
Fu, X. ve Chung, D.D.L., “Effects silica fume
latex methycellulose and carbon fibers on the
thermal conductivity and specific heat of cement
paste”, Cement and Concrete Research, 27
(12), 1799-1804(6), 1997.
Levine, I.N., Physical chemistry, McGraw-Hill
Education, Maidenhead, England, 2001.
Lide, D.R., CRC Handbook of chemistry and
physics, CRC Press, Boca Raton (FL), U.S.A,
-
Yıl 2010 ,
Cilt: 25 Sayı: 2, 0 - , 15.02.2013
Numan Yüksel
Atakan Avcı
Kaynakça
KAYNAKLAR (REFERENCES)
Bart, G. C. J., Thermal conduction in non
homogeneous and phase change media,
Doctoral Thesis, Delft University of Technology,
The Netherlands, 1994.
Pham, Q.T. ve Willix, J., “Thermal conductivity
of fresh lamb meat, offal and fat in the range -40
to +30 oC: measurements and correlations”, J.
Food Sci., 54 (3), 508–515,1989.
Singh, R.ve Kasana, H.S., “Computational aspects of
effective thermal conductivity of highly porous metal
foams”, Applied Thermal Engineering, 24, 1841–
, 2004
Tavman, I.H., “Effective Thermal Conductivity
of Isotropic Polymer Composites”, Int. Comm.
Heat Mass Transfer, 25(5), 723-732, 1998.
Belova, I.V. ve Murch, G.E., “Monte Carlo
Simulation of the Effective Thermal Conductivity
in Two-Pase Material”, Journal of Materials
Processing Technology, 153-154, 741-745,
-
Ochs, F., Heidemann, W. ve Müller-Steinhagen,
H., “Effective Thermal Conductivity of
Moistened Insulation Materials As A Function of
Temperature”, International Journal of Heat
and Mass Transfer, 51, 539–552, 2008.
Maqsood, A. ve Kamran, K., “Thermophysical
properties of porous sandstones: measurements
and comparative study of some representative
thermal conductivity models”, International
Journal of Thermophysics,; 26 (5), 1617-1631,
-
Cernuschi, F., Ahmaniemi, S., Vuoristo, P. ve
Mäntylä, T., “Modelling of thermal conductivity
of porous materials: application to thick thermal
barrier coatings”, Journal of the European
Ceramic Society, 24, 2657-2667, 2004.
Singh, K.J., Singh, R. ve Chaudhary, D.R., “Heat
conduction and a porosity correction term for
spherical and cubic particles in a simple cubic
packing”, J. Phys. D: Appl. Phys., 31, 1681–
, 1998.
Kohout, M., Collier, A.P. ve Štĕpánek, F.,
“Effective thermal conductivity of wet particle
assemblies”, International Journal of Heat and
Mass Transfer, 47, 5565–5574, 2004.
Chaudhary, D. R. ve Bhandari, R. C., “Heat transfer
through a three-phase porous medium”, Journal of
Physics D, British Journal of Applied Physics, 1,
–817, 1968.
Maxwell, J.C., A Treatise on Electricity and
Magnetism, third ed, Dover Publications Inc.,
New York, A.B.D., 1954.
Beck, A.E., “An improved method of computing
the thermal conductivity of fluid-filled
sedimentary rocks'”, Geophysics, 41, 133-144,
-
Carson, J. K., Lovatt, S. J., Tanner, D. J. ve
Cleland, A.C., “Thermal Conductivity Bounds for
Isotropic Porous Materials”, International
Journal of Heat and Mass Transfer,48, 2150-
, 2005.
Brailsford, A.D. ve Major, K.G., “The thermal
conductivity of aggregates of several phases,
including porous materials”, Br. J. Appl. Phys.,
, 313–319, 1964.
Carson, J. K., Lovatt, S.J., Tanner, D.J. ve
Cleland, A.C., “Predicting the effective thermal
conductivity of unfrozen, porous foods”, Journal
of Food Engineering, 75, 297–307, 2006.
Carson, J. K., “Review of effective thermal
conductivity models for foods”, International
Journal of Refrigeration, 29, 958-967, 2006.
Carson, J. K., Prediction of the thermal
conductivity of porous foods, PhD Thesis,
Massey University, Palmerston North, New
Zealand, 2002.
Carson, J. K., Lovatt, S. J., Taner, D.J. ve
Cleland, A.C., “An analysis of the influence of
material structure on the effective thermal
conductivity of theoretical porous materials using
finite element simulations”, International
Journal of Refrigeration, 26, 873–880, 2003.
Nielsen, L.E., Mechanical Properties of
Polymers and Composites, Vol. 2., Marcel
Dekker, New York, 1974.
Nielsen, L. E., “Thermal conductivity of
particulate-filled polymers”, J. Appl. Polym.
Sci., 17, 3819-3825, 1973.
Pezzotti, G., Kamada, I. ve Miki, S., “Thermal
conductivity of AlN/polystyrene interpenetrating
Networks”, Journal of the European Ceramic
Society, 20, 1197-1203, 2000.
Gonzo, E. E., “Estimating correlations for the
effective thermal conductivity of granular
materials”, Short communication, Chemical
Engineering Journal, 90, 299–302, 2002.
Ghodoossi, L., Hava Boşluklu Yapı
Elemanlarında Isı Geçişi, Master Tezi, İstanbul
Teknik Üniversitesi, Fen Bilimleri Enstitüsü,
Makine Mühendisliği Ana Bilimdalı, İstanbul,
, 1988.
Fu, S.-Y. ve Mai, Y.-W., “Thermal Conductivity
of Misaligned Short-Fiber-Reinforced Polymer
Composites”, Journal of Applied Polymer
Science, 88, 1497–1505, 2003.
Halpin, J.C., “Stiffness and expansion estimates
for oriented short fiber composites”, Journal of
Composite Materials, 3, 732–734, 1969.
Gemci, R., Lif takviyeli polimer kompozit
malzemelerde aşınma ve ısı iletimlerinin
iyileştirilmesi, Doktora Tezi, Uludağ
Üniversitesi, Fen Bilimleri Enstitüsü, Tekstil
Mühendisliği Anabilim dalı, Bursa, 102, 1996.
Agarwal, B.D., Broutman L.J. Analysis and
Performance of Fiber Composites, John Wiley
and Sons, U.S.A., 1980.
Levy, F.L., “A modified Maxwell–Eucken
equation for calculating the thermal conductivity of two-component solutions or mixtures”,
International Journal of Refrigeration, 4(4),
–225, 1981.
Becker, B.R. ve Fricke, B.A., “Food
thermophysical property models”, Int. Comm.
Heat Mass Transfer, 26 (5), 627-636, 1999.
Wang, J., Carson, J.K., North, M.K. ve Cleland
D.J., “A New Approach to Modelling The
Effective Thermal Conductivity of
Heterogeneous Materials”, International
Journal of Heat and Mass Transfer, 49, 3075-
, 2006.
Landauer, R., “The electrical resistance of binary
metallic mixtures”, J. Appl. Phys., 23, 779–784,
-
Kirkpatrick, S., “Percolation and conduction”,
Reviews of Modern Physics, 45, 574–588, 1973.
Davis, H.T., Valencourt, L.R. ve Johnson, C.E.,
“Transport processes in composite media”, J.
Am. Ceram. Soc., 58, 446-452, 1975.
Xue, Q. ve Xu, W.-M., “A Model of Thermal
Conductivity of Nanofluids with Interfacial
Shells”, Materials Chemistry and Physics, 90,
–301, 2005.
Krischer, O., The scientific fundamentals of drying
technology, Springer-Verlag, Berlin, 1963.
Hamdami, N., Monteau, J.-Y. ve Le Bail, A.,
“Effective thermal conductivity of a high porosity
model food at above and sub-freezing
temperatures”, International Journal of
Refrigeration, 26, 809–816, 2003.
Maroulis, Z.B., Krokida, M.K. ve Rahman, M.S.,
“Astructural generic model to predict the
effective thermal conductivity of fruits and
vegetables during drying”, J. Food Eng., 52, 47–
, 2002.
De Vries, U., Sluimer, P.ve Bloksma, A.H., “A
quantitative model for heat transport in dough and
crumb during baking”, International Symposium
on Cereal Science and Technology, Lund
University, Ystad, Sweden, 174–88, 13–16 June
-
Russell, H.W., “Principles of Heat Flow in
Porous Insulators”, J. Am. Ceram. Soc., 18, 1-5,
-
Tseng, C., Yamaguchit, M.ve Ohmorit, T.,
“Thermal Conductivity of Polyurethane Foams
from Room Temperature to 20 K”, Cryogenics,
, 305-312, 1997.
Chiew, Y.C. ve Glandt, E., “The effect of
structure on the conductivity of a dispersion”, J.
Coll. Interf. Sci., 94, 90–104, 1983.
Francl, J. ve Kingery, W.D., “Thermal conductivity:
IX, Experimental investigation of effect of porosity
on thermal conductivity”, J. Am. Ceram. Soc., 37,
–107, 1954.
Sheldon, R.P., Composite polymeric materials,
Applied Science Publishers, London and New
York, 86-88, 1982.
Chawla, K.K., Composite Materials-Science and
Engineering, Springer-Verlag, 1987.
Ozilgen, M., Food Process Modeling and
Control: Chemical Engineering Applications,
CRC Press, 518, 1998.
Hill, J.E., Leitman, J.D. ve Sunderland, J.E.,
“Thermal conductivity of various meats”, Food
Technology, 21, 1143–1148, 1967.
Rizvi, S.S.H., Thermodynamic Properties in
Dehydration, Editör: Rao, M.A. ve Rizvi, S.S.H.,
Engineering Properties of Foods, Marcel Dekker,
Newyork, 531, 1994.
Ashrae Handbook, Refrigeration, American
Society of Heating, Refrigeration and Airconditioning
Engineers Inc., GA, Atlanta, 2002.
Rahman, M.S., Thermophysical properties of
foods, Editör: Sun, D.-W., Advances in food
refrigeration, Leatherhead Publishing, Surrey,
England, 2001.
Kopelman, I. J., Transient heat transfer and
thermal properties in food systems, Doktora
Tezi, Food Science Departmant, Michigan State
University, East Lansing, MI, U.S.A., 1966.
Jeffrey, D.J., “Conduction through a random
suspension of spheres”, Proc. R. Soc. Lond. A,
, 355–367, 1973.
Xue, Q.-Z., “Model for effective thermal
conductivity of nanofluids”, Physics Letters
A,307 (5-6), 313–317, 2003.
Bauer, T.H., “A general analytical approach
toward the thermal conductivity of porous
media”, Int. J. Heat Mass Transfer, 36, 4181–
, 1993.
Babanov, A.A., “Method of calculation of
thermal conduction coefficient of capillary
porous material”, Sov. Phys. Technol. Phys., 2,
–484, 1957.
Ye, Z., Wells, C.M., Carrington, C.G. ve Hewitt,
N.J., “Thermal Conductivity of Wool and Wool-Hemp
Insulation”, International Journal of Energy
Research, 30, 37-49, 2006.
Symons, J.G., Clarke, R.E. ve Pierce, J.V.,
“Thermal performance of several Australian
fibrous insulating materials”, Journal of
Thermal Insulation and Building
Envelopes,19, 72–88, 1995.
Kohout, M., Collier, A.P. ve Štĕpánek, F.,
“Microstructure and transport properties of wet
poly-disperse particle assemblies”, Powder
Technology, 156, 120–128, 2005.
Cheng, S.C. ve Vachon, R.I., "The Prediction of the
Thermal Conductivity of Two and Three Phase Solid
Heterogeneous Mixtures”, Int.J. Heat Mass
Transfer, 12, 249, 1969.
Agari, Y., Uno, T., “Estimation on Thermal
Conductivities of Filled Polymers”, J. Appl.
Polym. Sci., 32, 5705-5712, 1986.
Gori, F., “A Theoretical Model for Predicting the
Effective Thermal Conductivity of Unsaturated
Frozen Soils”, Proceedings of The 4th International Conference on Permafrost, vol.
, Editör: Péwé, T. L., Washington DC: National
Academy Press, Fairbanks, U.S.A., 363-368,
-
Gori, F., Marino, C. ve Pietrafesa, M., “Experimental
measurements and theoretical predictions of the
thermal conductivity of two phases glass beads”,
International communications in heat and mass
transfer, 28 (8), 1091-1102 (17), 2001.
Barea, R., Osendi, M.I., Ferreira, J.M.F. ve
Miranzo, P. “Thermal conductivity of highly
porous mullite material”, Acta Materialia, 53,
-3318, 2005.
Singh, J. R., “Effective thermal conductivity of
highly porous two-phase systems”, Applied
Thermal Engineering, 24, 2727–2735, 2004.
Argento, C. ve Bouvard, D., “Modeling the
effective thermal conductivity of random packing
of spheres through densification”, Int. J. Heat
Mass Transfer, 39, 1343–1350, 1996.
Tichá, G., Pabst, W. ve Smith, D.S., “Predictive
model for the thermal conductivity of porous
materials with matrix-inclusion type
microstructure”, Journal of Materials Science
(Letters), 40 (18), 5045-5047, 2005.
Baschirow, A.B. ve Selenew, J.W., “Thermal
Conductivity of Composites”, Plaste Kaut, 23,
, 1976.
Bruggeman, D.A.G., “Calculation of physical
constants from heterogeneous substances”,
Annals of Physics, 24, 636, 1935.
Schulz, B., “Thermal conductivity of porous and
highly porous materials”, High Temperature-
High Pressures., 13, 649-660, 1981.
Meredith, R.E. ve Tobias, C.W., Conduction in
heterogeneous systems, Editör: Tobias, C.W.,
Advances in Electrochemistry and
Electrochemical Engineering, vol. 2, Interscience
Publisher, Newyork, 15-47, 1962.
Coble, R.L., Kingery, W.D., “Effect of porosity
on physical properties of sintered alumina”, J.
Am. Ceram. Soc., 39, 377–384, 1956.
Pabst, W., “Simple second-order expression: For the
porosity dependence of thermal conductivity”,
Journal of Materials Science, 40 (9-10), 2667-
(3), 2005.
Boomsma, K. ve Poulikakos, D., “On the
effective thermal conductivity of a threedimensionally
structured fluid-saturated metal
foam”, International Journal of Heat and Mass
Transfer, 44, 827-836, 2001.
Sugawara, A. ve Yoshizawa, Y., “An
Investigation on the Thermal Conductivity of
Porous Materials and its Application to Porous
Rock”, Australian J. Phys., 14, 468-469, 1961.
Fan, L.-W., Hu, Y.-C., Tian, T. ve Yu, Z.-T.,
“The prediction of effective thermal
conductivities perpendicular to the fibres of wood
using a fractal model and an improved transient
measurement technique”, International Journal
of Heat and Mass Transfer, 49, 4116–4123,
-
Peitgen, H.O. ve Saupe, D., The Science of
Fractal Images, Springer-Verlag Newyork Inc,
New York, U.S.A., 1988.
Hamilton, R.L. ve Crosser, O.K., “Thermal
conductivity of heterogeneous two-component
systems”, Industrial and Engineering
Chemistry Fundamentals, 1(3), 187–191, 1962.
Davis, R.H., “Thermal conductivity of mixture
with spherical inclusions”, Int. J. Thermophys.,
, 609-620, 1986.
Lu, S.-Y. ve Lin, H.-C., “Effective conductivity of
composites containing aligned spheroidal inclusions of
finite conductivity”, Journal of Applied Physics, 79,
, 1996.
Bhattacharya, A., Calmidi, V.V. ve Mahajan,
R.L., “Thermophysical properties of high
porosity metal foams”, International Journal of
Heat and Mass Transfer, 45, 1017-1031, 2002.
Kalaprasad, G., Pradeep, P., Mathew, G.,
Pavithran, C. ve Thomas, S., “Thermal
conductivity and thermal diffusivity analyses of
low-density polyethylene composites reinforced
with sisal, glass and intimately mixed sisal/glass
fibres”, Composites Science and Technology,
, 2967-2977, 2000.
Springer, G.S., Tsai, S.W., “Thermal
conductivities of unidirectional materials”, J.
Compos. Mater, 1, 166-173, 1967.
Verma, L.S., Shrotriya, A.K., Singh, R. ve
Chaudhary, D.R., “Thermal conduction in twophase
materials with spherical and non-spherical
inclusions”, J. Phys. D: Appl. Phys., 24, 1729–
, 1991.
Druma, A.M., Alam, M.K. ve Druma, C.,
“Analysis of Thermal Conduction in Carbon
Foams”, International Journal of Thermal
Sciences, 43, 689-695, 2004.
Gibson, P.W., “Multiphase heat and mass transfer
through hygroscopic porous media with
applications to clothing materials”, Technical
Report Natick/TR-97/005, U.S. Army Natick
Research, Development, and Engineering Center,
MA, Natick, U.S.A., 1996.
Patirop, C., Modeling of Thermal Performance of
Firefighter Protective Clothing During The
Intense Heat Exposure, Doktora Tezi, North
Carolina State University, Mechanical Engineering
Departmant, Raleigh, North Carolina, 2004.
Rahman, M.S. ve Chen, X.D., “A general form of
thermal conductivity equation as applied to an
apple: effects of moisture, temperature and
porosity”, Drying Technol., 13, 1-18, 1995.
Rahman, M.S., Chen, X.D. ve Perera, C.O., “An
improved thermal conductivity prediction model
for fruits and vegetables as a function of
temperature, water content and porosity”,
Journal of Food Engineering, 31, 163–170,
-
Rahman, M.S., “Thermal conductivity of four
food materials as a single function of porosity
and water content”, J. Food Eng., 15, 261-268,
-
Gupta, M., Yang, J. ve Roy, C., “Modelling the
Effective Thermal Conductivity in Polydispersed Bed
Systems: A Unified Approach using the Linear
Packing Theory and Unit Cell Model”, The Canadian
Journal of Chemical Engineering, 80, 830-839,
-
Gupta, M., Yang, J. ve Roy, C., “Predicting the Effective
Thermal Conductivity of Polydispersed Beds of Softwood
Bark and Softwood Char”, Fuel, 82, 395-404, 2003.
Tsotsas, E. ve Martin, H., “Thermal Conductivity
of Packed Beds: A Review”, Chem. Eng.
Process, 22, 19–37, 1987.
Zehner, P. ve Schlunder, E.U., “Thermal
Conductivity of Granular Materials at Moderate
Temperatures”, Chemie Ingr Tech., 42, 933-
, 1970.
Fu, X., Viskanta, R. ve Gore, J.P., “Prediction of
Effective Thermal Conductivity of Cellular
Ceramics”, Int. Comm. Heat Mass Transfer, 25
(2), 151-160, 1998.
Lee, S.L. ve Yang, J.H., “Modelling of Effective
Thermal Conductivity for A Nonhomogeneous
Anistropic Porous Medium”, Int. J. Heat Mass
Transfer, 41 (6-7), 931-937, 1997.
Park, J., Thermal/Fluid Characteristics of
Isotropic Plain-Weave Screen Laminates as
Heat Exchange Surfaces, Master Thesis,
University of Nevada, Mechanical Engineering
Departmant, Reno, Nevada, U.S.A., 2001.
Xu, J. ve Wirtz, R.A., “In-Plane Effective
Thermal Conductivity of Plain-Weave Screen
Laminates”, IEEE Transactions on components
and packaging Technologies, 25 (4), 615-620,
-
Hu, X.-J., Du, J.-H., Lei, S.-Y. ve Wang, B.-X.,
“Technical Note:A model for the thermal
conductivity of unconsolidated porous media
based on capillary pressure±saturation relation”,
International Journal of Heat and Mass
Transfer, 44, 247-251, 2001.
Liang, X.-G.ve Qu, W. “Effective thermal
conductivity of gas-solid composite materials and
the temperature difference effect at high
temperature”, International Journal of Heat
and Mass Transfer, 42 (10), 1885-1893(9),
-
Soma Shekar, S., Thermal performance of
plain weave screen as a heater surface in
paralel plate free convection, Master Tezi,
University of Nevada, Mechanical Engineering,
Reno, Nevada, 94, 2006.
Seo, B.H., Cho, Y.J., Youn, J.R., Chung, K.,
Kang, T.J. ve Park, J.K. “Model for Thermal
Conductivities in Spun Yarn Carbon Fabric
Composites”, Polymer Composites, 26, 791-
, 2005.
Carson, J.K., Lovatt, S. J., Tanner, D.J. ve
Cleland, A.C., “Experimental measurements of
the effective thermal conductivity of a pseudoporous
food analogue over a range of porosities
and mean pore sizes”, Journal of Food
Engineering, 63, 87–95, 2004.
Jiang, P., Li, M., Lu, T., Yu, L. ve Ren, Z.,
“Experimental Research on Convection Heat
Transfer in Sintered Porous Plate Channels”,
International Journal of Heat and Mass
Transfer, 47, 2085-2096, 2004.
Jang, B.K. ve Matsubara, H., “Influence of
rotation speed on microstructure and thermal
conductivity of nano-porous zirconia layers
fabricated by EB-PVD”, Scripta Materialia,52,
-558, 2005.
Fu, X. ve Chung, D.D.L., “Effects silica fume
latex methycellulose and carbon fibers on the
thermal conductivity and specific heat of cement
paste”, Cement and Concrete Research, 27
(12), 1799-1804(6), 1997.
Levine, I.N., Physical chemistry, McGraw-Hill
Education, Maidenhead, England, 2001.
Lide, D.R., CRC Handbook of chemistry and
physics, CRC Press, Boca Raton (FL), U.S.A,
-
Tüm Kaynakçayı Göster
Daha Az Kaynakça Göster
Toplam 442 adet kaynakça vardır.
Kaynak Göster
APA
Yüksel, N., & Avcı, A. (2013). GÖZENEKLİ MALZEMELERİN ETKEN ISIL İLETKENLİKLERİ ÜZERİNE MEVCUT ÇALIŞMALAR. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 25(2).
AMA
Yüksel N, Avcı A. GÖZENEKLİ MALZEMELERİN ETKEN ISIL İLETKENLİKLERİ ÜZERİNE MEVCUT ÇALIŞMALAR. GUMMFD. Mart 2013;25(2).
Chicago
Yüksel, Numan, ve Atakan Avcı. “GÖZENEKLİ MALZEMELERİN ETKEN ISIL İLETKENLİKLERİ ÜZERİNE MEVCUT ÇALIŞMALAR”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 25, sy. 2 (Mart 2013).
EndNote
Yüksel N, Avcı A (01 Mart 2013) GÖZENEKLİ MALZEMELERİN ETKEN ISIL İLETKENLİKLERİ ÜZERİNE MEVCUT ÇALIŞMALAR. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 25 2
IEEE
N. Yüksel ve A. Avcı, “GÖZENEKLİ MALZEMELERİN ETKEN ISIL İLETKENLİKLERİ ÜZERİNE MEVCUT ÇALIŞMALAR”, GUMMFD , c. 25, sy. 2, 2013.
ISNAD
Yüksel, Numan - Avcı, Atakan. “GÖZENEKLİ MALZEMELERİN ETKEN ISIL İLETKENLİKLERİ ÜZERİNE MEVCUT ÇALIŞMALAR”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 25/2 (Mart 2013).
JAMA
Yüksel N, Avcı A. GÖZENEKLİ MALZEMELERİN ETKEN ISIL İLETKENLİKLERİ ÜZERİNE MEVCUT ÇALIŞMALAR. GUMMFD . 2013;25.
MLA
Yüksel, Numan ve Atakan Avcı. “GÖZENEKLİ MALZEMELERİN ETKEN ISIL İLETKENLİKLERİ ÜZERİNE MEVCUT ÇALIŞMALAR”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 25, sy. 2, 2013.
Vancouver
Yüksel N, Avcı A. GÖZENEKLİ MALZEMELERİN ETKEN ISIL İLETKENLİKLERİ ÜZERİNE MEVCUT ÇALIŞMALAR. GUMMFD. 2013;25(2).