BibTex RIS Cite

AKIŞKAN YATAKLI KURUTUCUDA ZENCEFİLİN KURUMA KİNETİĞİNİN İNCELENMESİ

Year 2014, Volume: 29 Issue: 2, 0 - , 16.06.2014
https://doi.org/10.17341/gummfd.34777

Abstract

 

Bu çalışmada zencefilin akışkan yataklı kurutucuda kuruma kinetiği incelenmiştir. Yaş baza göre başlangıç nemi %88-89 olan zencefil kökleri, 2 mm kalınlığında dilimlenmiş ve % 4-5 nem içeriğine kadar kurutulmuştur. Kurutma havasının sıcaklığı, hızı ve bağıl neminin kuruma kinetiğine olan etkisini incelemek üzere, deneyler farklı kurutma havası (40, 50, 60 °C) sıcaklıklarında ve farklı (3 ve 4 m/s) hava hızlarında gerçekleştirilmiştir. Kurutma esnasında belli zaman aralıklarında alınan numunelerin kuru baza göre nem değerleri ölçülmüş ve daha sonra belirlenen nem oranları kullanılarak difüzyon katsayıları hesaplanmıştır. Elde edilen deneysel sonuçlar, kurutma havası sıcaklığının, hızının ve neminin kuruma hızında oldukça etkili bir parametre olduğunu göstermiştir. Ayrıca deneysel veriler literatürde var olan ince tabaka kuruma kinetiği modelleri ile karşılaştırılmış, verilerin Page modeli ile uyumlu olduğu görülmüştür.

References

  • Mujumdar, A.S., Handbook of Industrial Drying, Marcel Dekker, New York, A.B.D., 1995.
  • Pugsley, T., Chaplin, G., Khanna, P., “ Application of Advanced Measurement Techniques to Conical Lab-Scale Fluidized Bed Dryers Containing Pharmaceutical Granule”, Trans IChemE, Part C, Food and Bioproducts Processing, Cilt 85, No C3, 273–283, 2007.
  • Vervloet, D., Nijenhuis, J., Ommen, J.R. Van, “Monitoring A Lab-Scale Fluidized Bed Dryer: A Comparison Between Pressure Transducers, Passive Acoustic Emissions and Vibration Measurements”, Powder Technology, Cilt 197, 36–348, 2010.
  • Wormsbecker, M., Ommen, R. Van, Nijenhuis, J., Tanfara, H., c, Pugsley, T., “The Influence of Vessel Geometry on Fluidized Bed Dryer Hydrodynamics”, Powder Technology, Cilt 194, 115–125, 2009.
  • Bizmark, N., Mostoufi, N., Sotudeh-Gharebagh, R., Ehsani, H., “Sequential Modeling of Fluidized Bed Paddy Dryer”, Journal of Food Engineering, Cilt 101, 303–308, 2010.
  • Izadifar, M., Mowla, D., “Simulation of a Cross-Flow Continuous Fluidized Bed Dryer For Paddy Rice”, Journal of Food Engineering, Cilt 58, 325–329, 2003.
  • Assari, M.R., Basirat Tabrizi, H., Saffar-Avval, M., “Numerical Simulation of Fluid Bed Drying Based on Two-Fluid Model and Experimental Validation”, Applied Thermal Engineering, Cilt 27, 422–429, 2007.
  • Fyhr, C., Kemp, I. C., “Mathematical Modelling of Batch and Continuous Well-Mixed Fluidised Bed Dryers”, Chemical Engineering and Processing, Cilt 38, 11–18, 1999.
  • Lai, F.S., Chen, Y., Fan, L.T., “Modelling and Simulation of a Continuous Fluidized-Bed Dryer” Chemical Engineering Science, Cilt 41, No 9, 2419-2430, 1986.
  • Madhiyanon, T., Techaprasan, A., Soponronnarit, S., “Mathematical Models Based on Heat Transfer and Coupled Heat and Mass Transfers for Rapid High Temperature Treatment in Fluidized Bed: Application for Grain Heat Disinfestation”, International Journal of Heat and Mass Transfer, Cilt 49, 2277–2290, 2006.
  • Palancz, B., “A Mathematical Model for Continuous Fluidized Bed Drying”, Chemical Engineering Science, Cilt 38, No 7, 1045-1059, 1983.
  • Srinivasakannan, C., ve Balsubramaniam, N., “A Simplified Model for The Drying of Solids in Batch Fluidised Beds”, Braz. J. Chem. Eng., Cilt 19, 293–298, 2002.
  • Zare, D., Chen, G., “Evaluation af a Simulation Model in Predicting the Drying Parameters for Deep-Bed Paddy Drying”, Computers and Electronics in Agriculture, Cilt 68, 78–87, 2009.
  • Geng, F., Xu, D., Yuana, Z., Yanb, Y., Luob, D., Wang, H., Li, B.,, Chyangc, C.S., “Numerical Simulation on Fluidization Characteristics of Tobacco Particles in Fluidized Bed Dryers”, Chemical Engineering Journal, Cilt 150, 581–592, 2009.
  • Meziane, S., “Drying Kinetics of Olive Pomace in a Fluidized Bed Dryer”, Energy Conversion and Management, Cilt 52, 1644–1649, 2011.
  • Białobrzewski, I., Zielin´ska, M., Mujumdar, A.S., Markowski, M., “Heat and Mass Transfer During Drying of a Bed of Shrinking Particles – Simulation for Carrot Cubes Dried in a Spout-Fluidized-Bed Drier”, International Journal of Heat and Mass Transfer, Cilt 51, 4704–4716, 2008.
  • Zanoelo, E., F., “A Theoretical and Experimental Study of Simultaneous Heat and Mass Transport Resistances in a Shallow Fluidized Bed Dryer of Mate Leaves”, Chemical Engineering and Processing, Cilt 46, 1365–1375, 2007.
  • Niamnuy, C., ve Devahastin, S., “Drying Kinetics and Quality of Coconut Dried in a Fluidized Bed Dryer”, Chemical Engineering and Processing, Cilt 46, 1365–1375, 2007.
  • Bayrock, D., ve Ingledew, W. M., “Fluidized Bed Drying of Baker’s Yeast: Moisture Levels, Drying Rates, and Viability Changes During Drying”, Food Research International, Cilt 30, No 6, 407-415, 1997.
  • Tasirin, S.M., Kamarudin, S.K., Jaafar, K., Lee, K.F., “The Drying Kinetics of Bird’s Chillies in a Fluidized Bed Dryer”, Journal of Food Engineering, Cilt 79, 695–705, 2007.
  • Topuz, A., Gur, M., Gul M. Z., “An Experimental and Numerical Study of Fluidized Bed Drying of Hazelnuts”, Applied Thermal Engineering, Cilt 24, 1535–1547, 2004.
  • Balladin, D.A., Headley, O., Chang-Yen, I., McGaw, D.R., “High Pressure Liquid Chromatographic Analysis of The Main Pungent Principles of Solar Dried West Indian Ginger (Zingiber Officinale Roscoe)”, Renewable Energy, Cilt 13, No 4, 531–536, 1998.
  • Schweiggert, U., Hofmann, S., Reichel, M., Schieber, A., Carle, R., “Enzyme-assisted liquefaction of ginger rhizomes (Zingiber officinale Rosc.) for the production of spray-dried and paste-like ginger condiments”, Journal of Food Engineering, Cilt 84, 28–38, 2008.
  • Alakalı, J., Irtwange, S.V., Satimehin, A., “Moisture adsorption characteristics of ginger slices”, Ciencia e Tecnologia de Alimentos, Cilt 29, No 1, 155-164, 2009.
  • Phoungchandang, S., Saentaweesuk, S., “Effect of Two Stage, Tray and Heat Pump Assisted-Dehumidified Drying on Drying Characteristics and Qualities of Dried Ginger”, Food and Bioproducts Processing, Cilt 89, No 4, 429-437, 2011.
  • Ganesapillai, M., Miranda, L. R., Reddy, T., Bruno, M., Singh, A., “Modeling, Characterization, and Evaluation of Efficiency and Drying Indices for Microwave Drying of Zingiber Officianale and Curcuma Mangga", Asia-Pac. J. Chem. Eng., Cilt 6, 912–920, 2011.
  • Thorat, I. D., Mohapatra, D., Sutar, R. F., Kapdi, S. S., Jagtap, D.D., “Mathematical Modeling and Experimental Study on Thin-Layer Vacuum Drying of Ginger (Zingiber Officinale R.) Slices, Food Bioprocess Technol., Cilt 5,1379–1383, 2012.
  • Jayashree, E., Visvanthan, R., “Studies on Thin Layer Drying Characteristics of Ginger (Zingiber Officinale) in a Mechanical Tray Drierjournal of Plantation Crops”, Journal of Spices and Aromatic Crops, Cilt 41, No 1, 86-90, 2013.
  • Akpinar, E., Midilli, A. ve Bicer, Y., “Single layer drying behavior of potato slices in a convective cyclone dryer and mathematical modelling”, Energy Conversion Management, Cilt 44, 1689–1705, 2003.
  • Doymaz, I., “Thin-layer drying behavior of mint leaves”, J. Food Eng., Cilt 74, 370–375, 2006.
  • Crank, J., The Mathematics of Diffusion, Oxford University Press, Oxford, New York, A.B.D. 1975.
  • Senadeera, W., Bhandari, B.R., Young, G., Wijesinghe, B., “Influence of Shapes of Selected Vegetable Materials on Drying Kinetics During Fuidized Bed Drying”, Journal of Food Engineering, Cilt 58, 277–283, 2007.
  • Holman, J.P., Experimental Methods for Engineers, (Sixth Edition) McGraw-Hill, New York,1994.
Year 2014, Volume: 29 Issue: 2, 0 - , 16.06.2014
https://doi.org/10.17341/gummfd.34777

Abstract

References

  • Mujumdar, A.S., Handbook of Industrial Drying, Marcel Dekker, New York, A.B.D., 1995.
  • Pugsley, T., Chaplin, G., Khanna, P., “ Application of Advanced Measurement Techniques to Conical Lab-Scale Fluidized Bed Dryers Containing Pharmaceutical Granule”, Trans IChemE, Part C, Food and Bioproducts Processing, Cilt 85, No C3, 273–283, 2007.
  • Vervloet, D., Nijenhuis, J., Ommen, J.R. Van, “Monitoring A Lab-Scale Fluidized Bed Dryer: A Comparison Between Pressure Transducers, Passive Acoustic Emissions and Vibration Measurements”, Powder Technology, Cilt 197, 36–348, 2010.
  • Wormsbecker, M., Ommen, R. Van, Nijenhuis, J., Tanfara, H., c, Pugsley, T., “The Influence of Vessel Geometry on Fluidized Bed Dryer Hydrodynamics”, Powder Technology, Cilt 194, 115–125, 2009.
  • Bizmark, N., Mostoufi, N., Sotudeh-Gharebagh, R., Ehsani, H., “Sequential Modeling of Fluidized Bed Paddy Dryer”, Journal of Food Engineering, Cilt 101, 303–308, 2010.
  • Izadifar, M., Mowla, D., “Simulation of a Cross-Flow Continuous Fluidized Bed Dryer For Paddy Rice”, Journal of Food Engineering, Cilt 58, 325–329, 2003.
  • Assari, M.R., Basirat Tabrizi, H., Saffar-Avval, M., “Numerical Simulation of Fluid Bed Drying Based on Two-Fluid Model and Experimental Validation”, Applied Thermal Engineering, Cilt 27, 422–429, 2007.
  • Fyhr, C., Kemp, I. C., “Mathematical Modelling of Batch and Continuous Well-Mixed Fluidised Bed Dryers”, Chemical Engineering and Processing, Cilt 38, 11–18, 1999.
  • Lai, F.S., Chen, Y., Fan, L.T., “Modelling and Simulation of a Continuous Fluidized-Bed Dryer” Chemical Engineering Science, Cilt 41, No 9, 2419-2430, 1986.
  • Madhiyanon, T., Techaprasan, A., Soponronnarit, S., “Mathematical Models Based on Heat Transfer and Coupled Heat and Mass Transfers for Rapid High Temperature Treatment in Fluidized Bed: Application for Grain Heat Disinfestation”, International Journal of Heat and Mass Transfer, Cilt 49, 2277–2290, 2006.
  • Palancz, B., “A Mathematical Model for Continuous Fluidized Bed Drying”, Chemical Engineering Science, Cilt 38, No 7, 1045-1059, 1983.
  • Srinivasakannan, C., ve Balsubramaniam, N., “A Simplified Model for The Drying of Solids in Batch Fluidised Beds”, Braz. J. Chem. Eng., Cilt 19, 293–298, 2002.
  • Zare, D., Chen, G., “Evaluation af a Simulation Model in Predicting the Drying Parameters for Deep-Bed Paddy Drying”, Computers and Electronics in Agriculture, Cilt 68, 78–87, 2009.
  • Geng, F., Xu, D., Yuana, Z., Yanb, Y., Luob, D., Wang, H., Li, B.,, Chyangc, C.S., “Numerical Simulation on Fluidization Characteristics of Tobacco Particles in Fluidized Bed Dryers”, Chemical Engineering Journal, Cilt 150, 581–592, 2009.
  • Meziane, S., “Drying Kinetics of Olive Pomace in a Fluidized Bed Dryer”, Energy Conversion and Management, Cilt 52, 1644–1649, 2011.
  • Białobrzewski, I., Zielin´ska, M., Mujumdar, A.S., Markowski, M., “Heat and Mass Transfer During Drying of a Bed of Shrinking Particles – Simulation for Carrot Cubes Dried in a Spout-Fluidized-Bed Drier”, International Journal of Heat and Mass Transfer, Cilt 51, 4704–4716, 2008.
  • Zanoelo, E., F., “A Theoretical and Experimental Study of Simultaneous Heat and Mass Transport Resistances in a Shallow Fluidized Bed Dryer of Mate Leaves”, Chemical Engineering and Processing, Cilt 46, 1365–1375, 2007.
  • Niamnuy, C., ve Devahastin, S., “Drying Kinetics and Quality of Coconut Dried in a Fluidized Bed Dryer”, Chemical Engineering and Processing, Cilt 46, 1365–1375, 2007.
  • Bayrock, D., ve Ingledew, W. M., “Fluidized Bed Drying of Baker’s Yeast: Moisture Levels, Drying Rates, and Viability Changes During Drying”, Food Research International, Cilt 30, No 6, 407-415, 1997.
  • Tasirin, S.M., Kamarudin, S.K., Jaafar, K., Lee, K.F., “The Drying Kinetics of Bird’s Chillies in a Fluidized Bed Dryer”, Journal of Food Engineering, Cilt 79, 695–705, 2007.
  • Topuz, A., Gur, M., Gul M. Z., “An Experimental and Numerical Study of Fluidized Bed Drying of Hazelnuts”, Applied Thermal Engineering, Cilt 24, 1535–1547, 2004.
  • Balladin, D.A., Headley, O., Chang-Yen, I., McGaw, D.R., “High Pressure Liquid Chromatographic Analysis of The Main Pungent Principles of Solar Dried West Indian Ginger (Zingiber Officinale Roscoe)”, Renewable Energy, Cilt 13, No 4, 531–536, 1998.
  • Schweiggert, U., Hofmann, S., Reichel, M., Schieber, A., Carle, R., “Enzyme-assisted liquefaction of ginger rhizomes (Zingiber officinale Rosc.) for the production of spray-dried and paste-like ginger condiments”, Journal of Food Engineering, Cilt 84, 28–38, 2008.
  • Alakalı, J., Irtwange, S.V., Satimehin, A., “Moisture adsorption characteristics of ginger slices”, Ciencia e Tecnologia de Alimentos, Cilt 29, No 1, 155-164, 2009.
  • Phoungchandang, S., Saentaweesuk, S., “Effect of Two Stage, Tray and Heat Pump Assisted-Dehumidified Drying on Drying Characteristics and Qualities of Dried Ginger”, Food and Bioproducts Processing, Cilt 89, No 4, 429-437, 2011.
  • Ganesapillai, M., Miranda, L. R., Reddy, T., Bruno, M., Singh, A., “Modeling, Characterization, and Evaluation of Efficiency and Drying Indices for Microwave Drying of Zingiber Officianale and Curcuma Mangga", Asia-Pac. J. Chem. Eng., Cilt 6, 912–920, 2011.
  • Thorat, I. D., Mohapatra, D., Sutar, R. F., Kapdi, S. S., Jagtap, D.D., “Mathematical Modeling and Experimental Study on Thin-Layer Vacuum Drying of Ginger (Zingiber Officinale R.) Slices, Food Bioprocess Technol., Cilt 5,1379–1383, 2012.
  • Jayashree, E., Visvanthan, R., “Studies on Thin Layer Drying Characteristics of Ginger (Zingiber Officinale) in a Mechanical Tray Drierjournal of Plantation Crops”, Journal of Spices and Aromatic Crops, Cilt 41, No 1, 86-90, 2013.
  • Akpinar, E., Midilli, A. ve Bicer, Y., “Single layer drying behavior of potato slices in a convective cyclone dryer and mathematical modelling”, Energy Conversion Management, Cilt 44, 1689–1705, 2003.
  • Doymaz, I., “Thin-layer drying behavior of mint leaves”, J. Food Eng., Cilt 74, 370–375, 2006.
  • Crank, J., The Mathematics of Diffusion, Oxford University Press, Oxford, New York, A.B.D. 1975.
  • Senadeera, W., Bhandari, B.R., Young, G., Wijesinghe, B., “Influence of Shapes of Selected Vegetable Materials on Drying Kinetics During Fuidized Bed Drying”, Journal of Food Engineering, Cilt 58, 277–283, 2007.
  • Holman, J.P., Experimental Methods for Engineers, (Sixth Edition) McGraw-Hill, New York,1994.
There are 33 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Nezaket Parlak

Publication Date June 16, 2014
Submission Date June 16, 2014
Published in Issue Year 2014 Volume: 29 Issue: 2

Cite

APA Parlak, N. (2014). AKIŞKAN YATAKLI KURUTUCUDA ZENCEFİLİN KURUMA KİNETİĞİNİN İNCELENMESİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29(2). https://doi.org/10.17341/gummfd.34777
AMA Parlak N. AKIŞKAN YATAKLI KURUTUCUDA ZENCEFİLİN KURUMA KİNETİĞİNİN İNCELENMESİ. GUMMFD. June 2014;29(2). doi:10.17341/gummfd.34777
Chicago Parlak, Nezaket. “AKIŞKAN YATAKLI KURUTUCUDA ZENCEFİLİN KURUMA KİNETİĞİNİN İNCELENMESİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 29, no. 2 (June 2014). https://doi.org/10.17341/gummfd.34777.
EndNote Parlak N (June 1, 2014) AKIŞKAN YATAKLI KURUTUCUDA ZENCEFİLİN KURUMA KİNETİĞİNİN İNCELENMESİ. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 29 2
IEEE N. Parlak, “AKIŞKAN YATAKLI KURUTUCUDA ZENCEFİLİN KURUMA KİNETİĞİNİN İNCELENMESİ”, GUMMFD, vol. 29, no. 2, 2014, doi: 10.17341/gummfd.34777.
ISNAD Parlak, Nezaket. “AKIŞKAN YATAKLI KURUTUCUDA ZENCEFİLİN KURUMA KİNETİĞİNİN İNCELENMESİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 29/2 (June 2014). https://doi.org/10.17341/gummfd.34777.
JAMA Parlak N. AKIŞKAN YATAKLI KURUTUCUDA ZENCEFİLİN KURUMA KİNETİĞİNİN İNCELENMESİ. GUMMFD. 2014;29. doi:10.17341/gummfd.34777.
MLA Parlak, Nezaket. “AKIŞKAN YATAKLI KURUTUCUDA ZENCEFİLİN KURUMA KİNETİĞİNİN İNCELENMESİ”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 29, no. 2, 2014, doi:10.17341/gummfd.34777.
Vancouver Parlak N. AKIŞKAN YATAKLI KURUTUCUDA ZENCEFİLİN KURUMA KİNETİĞİNİN İNCELENMESİ. GUMMFD. 2014;29(2).